A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND

WONYEOL LEE, JINEON BAEK, AND SUNGWOO PARK

Stanford, USA
e-mail address: wonyeol@stanford.edu

POSTECH, Republic of Korea
e-mail address: gok01172@postech.ac.kr

POSTECH, Republic of Korea
e-mail address: gla@postech.ac.kr

ABSTRACT. Separation logic is an extension of Hoare logic which is acknowledged as an
enabling technology for large-scale program verification. It features two new logical con-
nectives, separating conjunction and separating implication, but most of the applications
of separation logic have exploited only separating conjunction without considering separat-
ing implication. Nevertheless the power of separating implication has been well recognized
and there is a growing interest in its use for program verification. This paper develops a
proof system for full separation logic which supports not only separating conjunction but
also separating implication. The proof system is developed in the style of sequent calculus
and satisfies the admissibility of cut. We also propose a proof search strategy based on
the proof system.

1. INTRODUCTION

Separation logic [26] is an extension of Hoare logic designed to simplify reasoning about
programs manipulating mutable data structures with potential pointer aliasing. It features
two new logical connectives, separating conjunction x and separating implication —, whose
semantics directly assumes memory heaps structured as a monoid. Separating conjunction
allows us to describe properties of two disjoint heaps with a single logical formula: A x B
means that a given heap can be divided into two disjoint heaps satisfying A and B re-
spectively. Separating implication, commonly known as magic wand, allows us to reason
about hypothetical heaps extending a given heap: A — B means that if a given heap is
extended with a disjoint heap satisfying A, the resultant heap satisfies B. The use of the
two separating connectives naturally leads to local reasoning in program verification in that
we only need to reason locally about those heaps directly affected by the program.

So far, most of the applications of separation logic have exploited only separating con-
junction. For example, many existing verification tools based on separation logic, such

1998 ACM Subject Classification: F.4.1. Mathematical Logic — Mechanical theorem proving, Proof theory.

Key words and phrases: Separation logic, Cut elimination, Proof system, Theorem prover.

This is an extended version of the paper that appeared in the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’14) [19].

LOGICAL METHODS @© Wonyeol Lee Jineon Baek Sungwoo Park
IN COMPUTER SCIENCE DOI:10.2168/LMCS-7?? Creative Commons

1

2 WONYEOL LEE JINEON BAEK SUNGWOO PARK

as Smallfoot [3], Space Invader [8], THOR [21], SLAyer [1], HIP [23], jStar [9], Xisa [7],
VeriFast [16], Infer [5], and Predator [11], use a decidable fragment by Berdine et al. [2] or
its extension which provides only separating conjunction. By virtue of the principle of local
reasoning, however, these tools are highly successful in their individual verification domains
despite not using separating implication at all.

Although separating implication is not discussed as extensively as separating conjunc-
tion in the literature, its power in program verification has nevertheless been well recognized.
Just around the inception of separation logic, Yang [27] already gives an elegant proof of
the correctness of the Schorr-Waite algorithm which relies crucially on the use of separating
implication in the main loop invariant. Krishnaswami [17] shows how to reason abstractly
about an iterator protocol with separation logic by exploiting separating implication in
the specification of iterators. Maeda et al. [20] adopt the idea of separating implication
in extending an alias type system in order to express tail-recursive operations on recursive
data structures. Recently Hobor and Villard [14] give a concise proof of the correctness of
Cheney’s garbage collector in a proof system based on the ramify rule, a cousin of the frame
rule of separation logic, whose premise checks a logical entailment involving separating im-
plication. These promising results arguably suggest that introducing separating implication
alone raises the level of technology for program verification as much as separation logic only
with separating conjunction improves on Hoare logic.

Despite the potential benefit of separating implication in program verification, how-
ever, there is still no practical theorem prover for full separation logic. The state-of-the-art
theorem provers for separation logic such as SeLoger [I3] and SLP [22] support only sepa-
rating conjunction, and the labelled tableau calculus by Galmiche and Méry [12] does not
directly give rise to a proof search strategy. Because of the unavailability of such a theorem
prover, all proofs exploiting separating implication should be manually checked, which can
be time-consuming even with the help of lemmas provided by the proof system (as in [14]).
Another consequence is that no existing verification tools based on separation logic can fully
support backward reasoning by weakest precondition generation, which requires separating
implication whenever verifying heap assignments (see Ishtiaq and O’Hearn [15]).

This paper develops a proof system Pgy, for full separation logic which supports not only
separating conjunction but also separating implication. Its design is based on the principle
of proof by contradiction from classical logic, and we develop its inference rules in the style
of sequent calculus. Pgy, uses a new form of sequent, called world sequent, in order to give
a complete description of the world of heaps, and its use of world sequents allows us to
treat separating implication in the same way that it treats separating conjunction. The key
challenge in the development of Pgy, is to devise a set of inference rules for manipulating
heap structures so as to correctly analyze separating conjunction and separating implication.

We show that Pgy, satisfies the admissibility of cut and that it is sound with respect to
separation logic. Although Pgr, is not complete with respect to separation logic, it achieves
a high degree of completeness in that those valid formulas that practically arise in program
verification are usually provable in Pgy,. We then explain our proof search strategy SS for
Psp, which always terminates and serves as the basis for our prototype implementation of
Psr.. We show that it is easy to extend Psy, with new logical connectives and predicates,
such as an overlapping conjunction AwB by Hobor and Villard [14].

Separating implication has been commonly considered to be much harder to reason
about than separating conjunction, as partially evidenced by lack of theorem provers sup-
porting separating implication and abundance of verification systems supporting separating

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 3

conjunction. Our development of Pgyp,, however, suggests that a proof system designed in
a principled way can support both logical connectives in a coherent way without requir-
ing distinct treatments. Our prototype implementation of Pgy, also suggests that such a
proof system can develop into a practical theorem prover for separation logic. To the best
of our knowledge, Pgy, is the first proof system for full separation logic that satisfies the
admissibility of cut and provides a concrete proof search strategy.

This paper is organized as follows. Section [2| gives preliminaries on separation logic.
Section [3] develops our proof system Pgy, and Section [4] gives two examples of proving world
sequents. Section[5|proves the admissibility of cut of Pgy, and Section [6] proves the soundness
of Pgy, with respect to separation logic. Section [7] explains our proof search strategy SS for
Pgr, and Section [§] discusses the implementation and extension of Pgy,. Section [9] discusses
related work and Section [I0] concludes.

2. SEMANTICS OF SEPARATION LOGIC

Separation logic extends classical first-order logic with multiplicative formulas from intu-
itionistic linear logic:

formula A,B,C == P|L|-A|AVA]|
|| AxA| A—~A|Ja.A
primitive formula P = [l—E||E=E]---
expression FE n= zlall]| -
location expression [n= zlal|l
value V n= L] -

location Li,Ls,Lg,---
stack variable x,,z
local variable a,b,c

1, ~A, AV B, and Ja.A are from classical first-order logic. | is the multiplicative unit.
A x B is a separating conjunction and A — B is a separating implication. We define T as
-1, ANB as =(mAV -B), and A D B as AV B. We use conventional precedence rules
for logical connectives: = > x > V > — > 3. In this work, we do not consider inductively
defined predicates.

Primitive formulas include a points-to relation [l — FE] for describing a singleton heap.
All other primitive formulas describe relations between expressions; for simplicity, we con-
sider only an equality relation F = E’. Expressions denote values which include locations
L. Location expressions are a special class of expressions that denote locations. In the
present work, we allow only locations as values, but it should be straightforward to intro-
duce additional forms of expressions for new types of values such as booleans and integers.
We syntactically distinguish between stack variables which originate from the program be-
ing verified (and thus may be called global variables instead) and local variables which
are introduced by existential quantifiers (and thus can never appear outside corresponding
existential formulas).

We specify the semantics of separation logic with respect to a stack and a heap. A stack
S is a finite partial mapping Var — Val from stack variables to values where Var denotes the
set of stack variables and Val denotes the set of values. Given a stack S, we can determine
a unique value for every expression F, which we write as [E]s. A heap H is a finite partial
mapping Loc — Val from locations to values where Loc denotes the set of locations. We

4 WONYEOL LEE JINEON BAEK SUNGWOO PARK

write H1# Hs to mean that heaps H; and Hy are disjoint, i.e., dom(H;) N dom(Hg) =
We write H; o Hy for the union of disjoint heaps H; and Hs where Hi#Hs is assumed,
and e for an empty heap. Heaps form a commutative cancellative monoid with o as the
associative operation and € as the identity:
(neutrality) Hoe=H
(commutativity) Hj o He = Hy o H;
(associativity) Hp o (Hg o Hs) = (Hy o Hy) o Hs
(cancellativity) H o Hy = H o Hy implies H; = Ho.
Given a stack S and a heap H, we obtain the semantics of separation logic from the
satisfaction relation (S, H) = A for formulas defined as follows:
o (SSH)E=[l— E|iff. H=([l]s— [E]s), i-e., H is a singleton heap mapping [{]s
to [[E]] S-.

e (SHYEE=Fiff. [E]s=[FE]s.

e (S,H) = L iff. never.

o (S,H)E=-Aiff. (S,H) [~ A.

o (SSH)YEAVBIiff. (SH) = Aor (S,H) = B.

o (S,H) E=1iff. dom(H) =0, i.e., H=c¢.

o (SSH)EAxBiff. H= HioHs and (S,H;) = A and (S, Hy) = B for some heaps
H1 and HQ.

o (S,H) = A—Biff. Hy = HoH; implies (S, H1) & A or (S, Ha) = B for any heaps
Hl and H2.

o (S,H) =3Ja.Aiff. (S,H) |=[V/a]A for some value V.
Note that the definition of (S, H) = Ja.A directly substitutes value V' for local variable a
in formula A (in [V/a]A) without extending stack S because we syntactically distinguish
between stack variables and local variables.
Although the satisfaction relation (S, H) |= A is enough for specifying the semantics
of separation logic, we deliberately derive the definition of its negation (S, H) [~ A, which
plays an equally important role in the development of our proof system:

o (S,H) I [l = B]iff. H # ([ils = [Els), ice., dom(H) # {[l]s} or H([l]) # [Es.

e (SSH)WEFE=Fiff. [E]s #[E]s.

. (S, H) [~ L iff. always.

o (S,H) E-Aiff. (S,H) | A.

e (SSH) AV Biff. (S,H) [~ A and (S,H) £~ B.

o (S,H) W~ iff. dom(H) # @, i.e., H # e.

e (S,H) = Ax B iff. H= Hyo Hy implies (S, Hy) = A or (S, H2) [~ B for any heaps
H1 and Hg.

o (S,H) = A—Biff. Hy= HoH; and (S, H1) = A and (S, H2) [~ B for some heaps
H1 and H2.

o (S,H) B~ Ja.Aiff. (S,H) [~ [V/a]A for any value V.
We observe that the definition for separating implication is symmetric to the definition for
separating conjunction:
e (S,H) = A% B should find a certain pair of heaps whereas (S, H) &= A+ B should
analyze an unspecified pair of heaps.
e (S,H) = A — B should analyze an unspecified pair of heaps whereas (S, H) - A —< B
should find a certain pair of heaps.

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 5

This symmetry suggests that we can incorporate separating implication into the proof sys-
tem in an analogous way to separating conjunction.
A formula A is valid, written |= A, if (S, H) = A holds for every stack S and heap H.

3. PROOF SYSTEM Psi, FOR SEPARATION LOGIC

This section presents the proof system Psy, for separation logic which is developed in the
style of sequent calculus. We first explain world sequents, the main judgment in Pgy,, and
then present the inference rules.

3.1. World sequents. The design of Pgy, is based on the principle of proof by contradiction
from classical logic. We describe the state of each heap with a set of true formulas and
another set of false formulas. A world sequent in Pgsy, gives a description of the entire world
of heaps, and a derivation of it means that the description is self-contradictory. Hence,
in order to check the validity of a formula in separation logic, we use it as a false formula
about an arbitrary heap w (about which nothing is known) and attempt to produce a logical
contradiction by proving a world sequent consisting solely of heap w. The definition of world
sequents and the principle of proof by contradiction are inherited from the nested sequent
calculus for Boolean BI by Park et al. [24].

Since Pgr, is designed to check the validity of a formula, it assumes an arbitrary stack,
which implies that every stack variable denotes an arbitrary value. This in turn implies that
in a derivation of a world sequent, we may use a fresh stack variable to denote an arbitrary
value. We exploit this interpretation of stack variables in an inference rule for first-order
formulas.

A world sequent consists of expression relations ©, heap relations ¥, and heap sequents

II:
expression relation 6 1= E=F |E#F
expression relations © = 61,---,6,
heap variable w,u,v
heap relation o 1= w=¢€|w#e€|

w= [l E] |w# [l E] |
w = W1 S wy

heap relations ¥ = o1, ,0,
truth context I' == -|I[,A
falsehood context A == | AA
heap sequent © = [[[= A]"
heap sequents II = 7, -+ ,m,

world sequent ©;% || II

e An expression relation 6 is an equality or inequality between two expressions. If
we introduce new forms of primitive formulas (e.g., E < E’), we should introduce
corresponding forms of expression relations.

e We assign a heap variable to each heap, and a heap relation o relates a heap to an
empty heap (w = e and w # €), a singleton heap (w = [l — E] and w # [l — E]),
or the union of two disjoint heaps (w = w; o wy). We refer to those heap relation
involving an empty heap or a singleton heap as atomic heap relations. As heaps
form a commutative (cancellative) monoid, we assume commutativity of o and use
wp o wo and we o wi interchangeably.

6 WONYEOL LEE JINEON BAEK SUNGWOO PARK

e A heap sequent [I' = A]" describes heap w with truth context I' and falsehood
context A which contain true formulas and false formulas, respectively, about heap
w.

In this way, a world sequent O; % || IT gives a complete description of the world of heaps.
We require that no local variable appear in expression relations and heap relations, and
that a world sequent contain a unique heap sequent for each heap variable.

A world sequent represents a graph of heaps induced by heap relations. Given a heap
relation w = wy o we, we say that parent heap w has two child heaps w; and ws which are
sibling heaps to each other. We can also extend parent-child relations to derive ancestor-
descendant relations. If a heap has no pair of child heaps, we call it a terminal heap (where
we ignore such a heap relation as w = w o w, with we = €); otherwise we call it a non-
terminal heap. Note that a heap relation w = € or w = [l — E] does not immediately mean
that w is a terminal heap because we may have another heap relation w = wj o we. Pgy,,
however, allows us to normalize all heap relations and turn w into a terminal heap.

Psy, also uses an expression contradiction judgment © F 1 which is an abbreviation of
a particular form of a world sequent ©;- || - and means that expression relations © produce
a logical contradiction. Since the definition of expression relations is extensible, we do not
give inference rules for the expression contradiction judgment and just assume a decidable
system for it.

Pgy, consists of logical rules in Figure [structural rules in Figure [2 and heap con-
tradiction rules in Figure The logical rules deal with formulas in heap sequents 11, the
structural rules reorganize graphs of heaps induced by heap relations ., and the heap con-
tradiction rules detect logical contradictions in heap relations 3, or heap contradictions.
Pgy, shares the logical rules (for propositional and multiplicative formulas) with the nested
sequent calculus for Boolean BI in [24], but the structural rules and the heap contradiction
rules are specific to separation logic. We read every inference rule from the conclusion to the
premise, and the derivation of a world sequent always terminates with a proof of a logical
contradiction. Hence, in order to show the validity of a formula A, we try to prove a world
sequent - - || [= A]".

3.2. Logical rules of Pgy,. Figure [1| shows the logical rules of Pgy,. Except for the rule
ExpCont, a logical rule focuses on a principal formula in a heap sequent and either produces
a logical contradiction (in the rule LL) or rewrites the world sequent of the conclusion
according to the semantics of separation logic in Section 2l For each type of formulas, Pgy,
has both a left rule, which analyzes a true formula about a heap, and a right rule, which
analyzes a false formula about a heap, as in a typical sequent calculus. The rules for points-
to relations introduce a corresponding heap relation. The rules for propositional and first-
order formulas are from first-order classical logic. In the rule JL, the fresh stack variable
x denotes an arbitrary value. In the rules 3L and 3R, we write [E/a]A for substituting
expression F for local variable a in formula A. The rules =L and =R are the only logical
rules that add expression relations, and the rule ExpCont checks if expression relations ©
produce a logical contradiction.

The rules IL and IR use the fact the | is true only at an empty heap. The rules xL and
*R are based on the following interpretation of multiplicative conjunction * which closely
matches the semantics of separation logic in Section

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 7

Rules for points-to relations:
;Y w=[l— E]|ILI= A]" ;Y w#[l— E]|ILIT = A]"

O [T lm B —A" "t Tes|mr—aio e R
Rules for propositional formulas:
;% | IL [T = A, A" 6;Y | I [A= A]Y
0;% || IL [, L = A]” Sl=YS | IL [[,-A = A]" 0;% | I, [L = A,-A]" R
;Y || I, A= A]Y ;% | II,[IB= A]" ;Y | I, = A, A, B]Y
0. [IL[[,AVB — A]” b s mr—=a,aver 'R
Rules for multiplicative formulas:
0; %, w=¢| I [= A]" 0;X,w#e | II[I = A]"
0;5 | IL[[,1 = AJ” Or L= A0 X
fresh wi, wo O; Y, w=wows || I, [= A]Y,[A =]"*,[B=]"?
;% | I [T, A% B — A" L
@; by ” 11, [P - A,A*B]w, [Fl - Al,A]wl, [FQ - AQ]wQ
W=wpowy €% @; hM ” 11, [F - A,A*B]w, [Fl - Al]wl, [FQ - AQ,B]wz
0% | IL[T = A, A BJ%, [[1 = A", [Ty — Ag]™? R
@; b)) H H, [F, A—~xB— A]w, [Fl — Al, A]wl, [FQ — AQ]WZ
w9y =wow, € X 0;X H 11, [F,A —* B — A]w, [Fl - Al]wl, [FQ,B - Ag]w2
0.5 | ILIT, A =B — A", [[) = A", [Ty = Ag™ =
fresh wi, wo O;Y,wy =wouw || IL[I' = A]Y,[A =]"*, [= B]"?
O [T — A, A—=B" ~R
Rules for first-order formulas:
fresh x ;% || I, [T, [z/a]A = A]Y ;% || I, I = A, [E/a]A, Ja. A]"
©;% || II, I Ja. A = A]Y ;% | I, = A,Ja. A"
Rules for primitive formulas for expressions:
©,E=FE"% | H,[F:>A]w_ O,E#+FE; Y| H,[F:>A]w_ OFr | ExpCont
;Y | IL[IE=FE = A]Y ;Y | Il = AE=F]" ;% || I

Figure 1: Logical rules in the proof system Pgy, for separation logic

e Ax B is true at heap w iff. w = w; o wy and A is true at heap wy and B is true at
heap ws for some heaps w; and wo.
e Ax B is false at heap w iff. w = wy o wo implies that A is false at heap w; or that
B is false at heap wsy for any heaps wi and ws.
Hence the rule xL creates (some) fresh child heaps w; and ws, whereas the rule xR chooses
(any) existing child heaps w; and we. Similarly the rules +«L and —R are based on the
following interpretation of multiplicative implication —x:

8 WONYEOL LEE JINEON BAEK SUNGWOO PARK

e A — B is true at heap w iff. wo = w o wy implies that A is false at heap w; or that
B is true at heap ws for any heaps wi and ws.

e A — B is false at heap w iff. wy = w o w; and A is true at heap w; and B is false
at heap wo for some heaps wy and ws.

Hence the rule —L chooses (any) existing sibling heap w; and parent heap wq, whereas as
the rule —R creates (some) fresh sibling heap w; and parent heap wy. The rules xL and —+R
are the only logical rules that add parent-child heap relations to extend the graph of heaps,
and introduce fresh heap variables w; and we that are not found in the world sequent in
the conclusion. The rules xR and —L are the only logical rules that replicate the principal
formula into world sequents in the premise.

In the rules xR and —L, we allow equalities between heap variables wy, ws, and w.
Since an equality between these heap variables invalidates the requirement that a world
sequent contain a unique heap sequent for each heap variable, we interpret heap sequents
for the same heap variable in the rules xR and —L as follows:

e In the conclusion, we implicitly replicate the same heap sequent as necessary.
e In the premise, we combine all changes made to individual heap sequents for the
same heap variable to produce a single heap sequent.

For example, an equality w = w; in the rule xR yields the following special instance:

0;% H 11, [F - A,A*B,A]w,[rg - AQ]w2
w=wowy €Y ;X | IL[I = A, A% B|" [['y = Ag, B|"?

;% H 11, [F - A,A*B]w, [PQ - Ag]w2

The rule xR has two more special instances (corresponding to heap relations w = wq o wy
and w = w o w), and similarly the rule —«L has a total of three special instances.

Now we can decompose each individual formula by applying its corresponding logical
rule, thus accumulating expression relations and heap relations and creating fresh heaps.
When expression relations become self-contradictory, we apply the rule ExpCont, thus ob-
taining a complete derivation tree. In order to achieve a high degree of completeness of Pgr,
with respect to separation logic, however, we should also be able to: 1) enumerate as many
heap relations w = w; o we and we = w o w; for a given heap w as possible for the rules xR
and —L; 2) produce heap contradictions, for example, from w =€ and w = [l — E]. (We
assume that we can make a correct guess on expression F in the rule 3R.) The remaining
challenge is to devise a set of structural rules and another set of heap contradiction rules
accomplishing these two goals, which would enable us to enumerate as many feasible heap
relations as possible from those generated by the logical rules and detect all types of heap
contradictions.

3.3. Structural rules of Pgy,. The structural rules of Pgy, are divided into five groups
according to their roles in reorganizing graphs of heaps represented by world sequents.
The order of the structural rules in Figure 2| roughly follows their use in our proof search
strategy SS described in Section [7] In a certain sense, we design the structural rules so as
to maximize the degree of completeness of Pgy, with respect to separation logic when the
logical rules are already given as in Figure[l] Below we informally discuss the key properties
of the structural rules, which we formally present in Section [7.2]

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 9

Rule for disambiguating heap relations and leaving only disjoint terminal heaps:

uliwlowg, [——]w1
Uin30w4, [—]w2
V1 = wy o w3, [= "3,
{w=wujoug,w=vy0v} CX fresh wy,ws, w3, wy O;%, vg =woowy |1, [[=]
;3| II
Rules for applying associativity of the union of disjoint heaps:
{w=wuov,u=ujou} CX freshu' ;% u =wugov,w=ujou |II[= ']“/ A
o |1 ssoc
Rules for propagating atomic heap relations:
{lw=ew=wiow} CE ;38w =e€wy=c¢|1II p
oy [T rope
@Ewl [lHE]wz—E”H
{w=[l—El,w=wow} CYX ;X w =ecwy=[—E]|II b
oy [T rop —
Rules for normalizing heap relations:
O; N, w = din
Lo/ w)(Sw = wow) | o)
0;3,w=uov,w =uowv || II
O; [w/u)(5,v =€) || [w/u]ll O; [w/ul(X,w =€) || [w/u]ll
NormEmpt
0;3,w=uov,v=c¢|II ormPC ;5 w=ecu=c¢c|II ormEmpty

Rules for creating an empty heap and applying the monoid laws for empty heaps:

fTeSh We @’ 2]”[[)6 = € || H’ [— ‘]we

o | 1 ENew
We =€ € X @;E,wiwowEHHEJ_ w=wou €Y @;E,uiGHHEC I
o:% | oin o | ance

Figure 2: Structural rules in the proof system Pgy, for separation logic

3.3.1. Rule for disambiguating heap relations. The rule Disjx disambiguates heap relations
in order to make disjoint all terminal heaps which are subsumed by a common root heap.
Roughly speaking, two heaps are disjoint if they share a common ancestor which has a heap
relation separating them. In the premise of the rule Disj, child heaps u; and v; (7,5 = 1,2)
share a common parent heap w, but their exact relations are unknown. For example, heap
u1 may completely subsume, partially overlap with, or be disjoint from heap v;. In general,

10 WONYEOL LEE JINEON BAEK SUNGWOO PARK

each pair of child heaps u; and v; are allowed to share a common child heap, so the rule Disj*
disambiguates their relations by introducing four fresh terminal heaps, wy to w4, which are
all disjoint from each other:

Now, for example, we may assume that the intersection of heaps w; and v; is represented
by heap wi. Note that if heap u; or v; is not a terminal heap, the rule Disjx gives rise to
unknown relations between the existing child heaps of u; or v; and two of the fresh terminal
heaps. Thus the rule Disjx eliminates unknown relations between child heaps potentially
creating similar unknown relations. By repeatedly applying these rules, we can eventually
obtain a graph of heaps such that all terminal heaps subsumed by a common root heap in
the graph are disjoint. The rule Disj*x corresponds to the cross-split axiom for separation
algebras [10].

3.3.2. Rule for applying associativity of o . The rule Assoc creates new heap relations ac-
cording to associativity of the union of disjoint heaps. Suppose that we have two heap
relations w = uwowv and u = u; o us. The rule Assoc introduces a fresh heap v’ in order to
associate two heaps ug and v which are known to be disjoint but do not have a common
parent heap yet; it also assigns heap w as the common parent heap of heaps u; and u':

(w)
S
Assoc
@ —
OO0

Note that unlike the rule Disjx, the rule Assoc creates no fresh terminal heaps.

The rule Assoc is crucial for enumerating heap relations involving a particular heap.
The basic observation is that by repeatedly applying the rule Assoc to a graph of heaps, we
can eventually obtain another graph of heaps with the same set of terminal heaps such that
for each combination of terminal heaps subsumed by a common root heap, there is at least
one heap subsuming exactly these terminal heaps and no others. By starting with a graph
of heaps obtained by repeatedly applying the rule Disjx, we can enumerate all feasible heap
relations w = wy o wo and we = w o wy for a particular heap w where we assume that heaps
wy and we are in the graph. For the case that w; or ws is an empty heap, however, we need
another set of structural rules for dealing with empty heaps. We should also combine heap
sequents for the same heap.

3.3.3. Rules for propagating atomic heap relations. The rules for propagating atomic heap
relations, or propagation rules, are designed to propagate all atomic heap relations (w = e,
w# €, w=[— E], w# [l = E]) from non-terminal heaps to terminal heaps. A propaga-
tion rule converts an atomic heap relation for a heap w into semantically equivalent heap

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 11

relations for its child heaps w; and wy (with w = w; ows). It rewrites world sequents
according to the following fact on atomic heap relations where we assume w = wj o wa:

e w = e iff. w; =€ and wy = € (for the rule Prope).

e w=[l— E]iff. either w; = [l — E] and wy =€, or w; =€ and wy = [l — E] (for

the rule Prop+—).

Note that although the new heap relations for the child heaps w; and ws collectively imply
the original heap relation o, we have to preserve ¢ in every world sequent of the premise
because it may still interact with another pair of child heaps w] and wf (with w = w} o wj).
After considering all such interactions, however, we may safely discard o (by the rule Weaken
to be introduced in Section .

The propagation rules are the first step toward a complete procedure for producing
heap contradictions (which detect all types of heap contradictions). Suppose that we re-
peatedly apply the propagation rules until no more new heap relations arise from atomic
heap relations. After discarding atomic heap relations for non-terminal heaps, we obtain
a set of graphs of heaps (with the same structure as the original graph) in which atomic
heap relations reside only for terminal heaps. Now, in order to produce heap contradictions
from atomic heap relations, we need to inspect only terminal heaps of these graphs, which
makes it much easier to develop a complete procedure for producing heap contradictions.

3.3.4. Rules for mormalizing heap relations. The rules for normalizing heap relations, or
normalization rules, merge two identical heaps and isolate empty heaps while simultaneously
shrinking the graph of heaps. In the rule NormEq, heaps w and w’ are identical and we merge
the two heaps by combining their heap sequents. Here we write [w’/w]¥ for substituting
w’ for w in every heap relation in X. We also write [w’/w]II for merging a heap sequent for
w into a heap sequent for w':

[w /w|(I, [T = A", [[V = AY) = II,[[,IV = A, A

As a special case, if II contains a heap sequent for w but not for w’, we rename w to w’.
Note that the rule NormEq implies that o is (partial) deterministic. In the rule NormPC,
v = € implies that heaps w and u are identical. Hence we merge the two heaps by combining
their heap sequents and isolate the empty heap v from the graph of heaps. Similarly the
rule NormEmpty merges two empty heaps w and u by combining their heap sequents. In
effect, it allows us to collect all empty heaps, which do not need to be distinguished for the
purpose of proof search, into a single empty heap. Note that the rule NormEmpty implies
the existence of a single unit of o. By repeatedly applying the normalization rules to a
graph of heaps, we can eventually obtain an equivalent graph which maintains a unique
world sequent for each heap and possibly a unique empty heap isolated from the graph.

It is important that the normalization rules shrink the graph of heaps, but preserve
all the properties established by the previous structural rules. For example, if the graph
satisfies the property that all terminal heaps are disjoint (established by the rule Disjx), it
continues to satisfy the same property after an application of any normalization rule. Hence
it is safe to aggressively apply the normalization rules after applying the previous structural
rules.

12 WONYEOL LEE JINEON BAEK SUNGWOO PARK

3.3.5. Rules for dealing with empty heaps. The last group of structural rules create an empty
heap and apply the monoid laws for empty heaps. We use the rule ENew when no rule can
directly produce an empty heap. The rule EJoin, which is based on neutrality of ¢, is sound
because extending a heap with an empty heap makes no change. The rule ECancel creates
an empty heap when a heap is shown to be a child heap of itself. It is based on cancellativity
of o: we can always generate w = w o w, and we = € by the rules ENew and EJoin, and
w=wowu and w = w o w, imply u = € by cancellativity of o. (Similarly the rule NormPC
is based on cancellativity of o: we can always generate w = w o v by the rule EJoin, and
w=wuov and w=wov imply w = u.) It turns out that we need the rule ECancel for
the proof of admissibility of cut (Theorem . On the other hand, the rule ECancel is
unnecessary for SS, which searches only for such world sequents that do not contain heap
relations of the form w = w o u.

Now we can, to some extent, achieve a high degree of completeness of Pgy,. For a
given heap w, in order to enumerate as many heap relations of the form w = w; o wy and
wg = w o w; as possible, we first analyze the graph of heaps obtained by repeatedly applying
the previous structural rules. This produces all heap relations that involve only non-empty
heaps initially present in the graph. Then we apply the rule EJoin as necessary to produce
all other heap relations that involve empty heaps.

Note, however, that applying the structural rules in Psy, does not necessarily produce
all possible heap relations involving a given heap w. In separation logic, due to the definition
of a heap, we can 1) extend an arbitrary heap with a fresh non-empty heap and 2) divide
an arbitrary non-empty heap into two disjoint heaps one of which is a singleton heap. In
Psy,, on the other hand, we cannot produce such heap relations that correspond to 1) or 2).

We may think of the rule EJoin as extending heap relations for heap w with a pair of
child heaps w and we, or a pair of sibling heap w,. and parent heap w. It is the only rule in
Pgy, that is capable of creating new heap relations for an arbitrary heap. Thus, whenever
an arbitrary heap with no heap relation needs a pair of child heaps or a pair of sibling and
parent heaps, we should apply the rule EJoin which inevitably reuses an existing empty
heap. For example, we prove the validity of T x T as follows:

swe=e6w=wow || [L=T*xT[" [= " Ll
swe=€ew=wow | [= T*xT,T|" [= " R :
swe=€6w=wow || [= T*T|" [= |" _*R
W e | [= Tx T [= o oo
=TT Fhlew

Note that there is no need to create fresh child heaps wy and we with w = wq o wa: if we can
prove the world sequent using fresh child heaps about which nothing is known, we should be
able to prove it equally by reusing an existing empty heap. Similarly we prove the validity
of =(T — L) as follows:

S We = €,W = W O W, H [T_*J_,J_:']w’[_z_]we J_ll__

SWe = €, W = W o we || [T—*J_:>.]w7[.:>,]we EJ—.k

swe=c¢€| [T L=][=] oin
ENew

[T =L ="
5o [= (T = L))

-R

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 13

;Y w=cw=[l— E]|II Conters O0;X,w=cwFel Il Conte7
0,l=IE=E;Sw=[lr E,w=[l'»E| I
: T 7 Cont—=
O w=[l—E,w=[I'—-FE]|II
O, A3 w=[l—El,w#[l'—E]|II
O, E4FE;Sw=[l—E,w#[' - FE] |10
: S ; Conti—#
;X w=[l—E,w#[I'—-FE]|1I
@,ll#lg;Z,wiwlowg,wli[l1»—>E1],w2i[lg»—>E2] ||H
Cont o—

@;E,wiwlowg,wl = [ll l—)El],’U)Q = [lg F—)EQ] H 11

@,E,w:uou’u:[lHE] H I Cont o2

Figure 3: Heap contradiction rules in the proof system Pgj, for separation logic

Again we do not create fresh sibling and parent heaps and instead reuse an existing empty
heap.

3.4. Heap contradiction rules of Psy,. The proof system Psy, has six rules, Conte# to
Cont o2, for producing heap contradictions (Figure . In conjunction with the structural
rules, these rules enable us to detect all types of heap contradictions in any world sequent
only with empty heap sequents.

To see why, assume a world sequent ©;% || IT only with empty heap sequents. By
repeatedly applying the structural rules in the same order as presented in Section [3.3] we
can obtain a semantically equivalent set of world sequents ©;;%; || II; (¢ = 1,--- ,n) such
that: 1) X; induces a graph of heaps in which all terminal heaps are disjoint; 2) atomic
heap relations reside only for terminal heaps and we need to consider only terminal heaps
to detect heap contradictions.

e For an empty heap, we use the rules Conte# and Conte— which describe the only
way to produce heap contradictions from an empty heap with w = e. Note that
w =€ and w # [l — E] do not produce a heap contradiction because the former
implies the latter.

e For a terminal singleton heap, we use the rules Cont—= and Cont—= which
describe the only way to extract expression relations from a terminal singleton
heap with w = [l — E]. Note that: 1) w = [l — E] and w = [I' = E'] imply | =1’
and E = E; 2) w=[l— E] and w# '~ E'] imply | # ' or E # E’; and 3)
w = [l — E] implies w # e. We do not need to consider other forms of terminal
heaps, for example, those with no atomic heap relations.

e Finally the rules Cont o— and Cont o—2 describe the only way to extract expression
relations from two disjoint terminal singleton heaps and to produce heap contradic-
tions from a singleton heap that is disjoint from itself, respectively. Note that: 1)

14 WONYEOL LEE JINEON BAEK SUNGWOO PARK

wy = [l1 = E4], we = [la = E»], and w = w; o we imply I3 # l2; and 2) a singleton
heap is never disjoint from itself.
In this way, we can detect all types of heap contradictions in heap relations 3;. We formally
state the completeness of the heap contradiction rules with respect to separation logic in

Section [7.2l

3.5. Properties of Pgr,. The following propagation rules are admissible:
@; E7w1 75 € || II
{w#e,w=wiow} CE ;5 we#e€|1I

6;% || II

Prope#
@;E)wl ?é €, W2 %6 H 1
{w#[l—= El,w=wiow}C¥ ;X u#[l—El,ue#[l—E]|1I
;Y | I
To derive the rule Propes , we use the following relation: w # € iff. wy # € or we # €.

The rule Prop—# is based on the negation of the following relation (which we can easily
check):

o w= [l E]iff. 1) w; =[l— E] or wy = [l — EJ]; and 2) w; =€ or wy =e.
We first show that it is safe to merge two arbitrary heap sequents:

Lemma 3.1. If@; by H H, [Fl — Al]u, [FQ — AQ]U, then @; [u/v]E ” H, [Fl, FQ — Al, Ag}u

Prop+—#

Intuitively the second world sequent inherits every heap relation from the first world sequent,
so we should be able to prove the second by the same sequence of rules in the proof of the
first or its subsequence.

Next we prove the contraction property for heap relations:

Proposition 3.2. If ©;%, 0,0 || II, then ©; %, 0 || II.

The statement in Proposition implies that we may apply the rules Disj*x, Assoc, and
Cont o— to the same heap relation o. For the case of applying the rule Disjx to the same
heap relation o (which essentially has no effect), we need the rules ENew and EJoin, which
are necessary for our proof search strategy SS anyway. For the case of applying the rule
Assoc to the same heap relation o, we need the rule ECancel, which, however, is unnecessary
for SS because it searches only for such world sequents that do not contain heap relations
of the form w = w o u. Similarly for the rule Cont o, we need the rule Cont o—2, which
is unnecessary for SS.
Finally we prove the admissibility of the rules Prope# and Prop+ = :

Lemma 3.3. If ©; || II using the rules Prope# and Prop— , then ©;% || II.

4. EXAMPLES OF PROVING WORLD SEQUENTS

This section presents two examples of proving world sequents in Pgy,. We write [l —] to
denote [l — E] for some expression E and assume two distinct location expressions [and I’

(1 £1).

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 15

4.1. =((I =]*[" = Al]*=[l' =])). The goal formula implies that given a frag-
ment of a heap, we can uniquely determine the remaining fragment. Its proof illustrates
that the rule Disjx indirectly applies cancellativity of o to two pairs of child heaps.

We begin with a world sequent -;- || [= C|" where C is the goal formula. After
applying the logical rules, we obtain the following graph of heaps where heap relations are
displayed for child heaps:

=[] =] o=~] [~]

Then we apply the rule Disj*x and the propagation rules Prop— and Prop—## to generate
2x 2 x2x2 =16 different world sequents as new goals. All these new goals are immediately
provable by the rules Conte+—, Conte , Cont—## , and ExpCont. An example of such a
world sequent has heap relations wy = [I’ — -], originating from heap usy by the rule Prop—,
and wy # [I' — -], originating from heap vy by the rule Prop+— = :

wy = (1] ‘70256‘ ‘wgée‘ wy = (I]
wg # []

By applying the rules Cont—# and ExpCont to heap wy, we complete the proof.

42. AxA D A where A = =(T —~l). The goal formula is valid in separation logic be-
cause heaps form a partial deterministic monoid: Hj o Ho may be undefined (when Hy# Hs
does not hold), but if it is defined, the result is unique. In contrast, the same formula
is not valid in Boolean BI, the underlying theory of separation logic, which assumes a
non-deterministic monoid [1§].

The proof illustrates the use of the rule EJoin in proving a non-trivial formula. After

applying the logical rules to a world sequent -; - || [= Ax A D A]", we obtain the following
graph of heaps:
ug=¢€| |[T—x=1=]| |vg=c¢
<> <> <>

Since heap w has no sibling and parent heaps, we cannot apply the rule —«L to T — =l at
this point. To make further progress, we apply the rule EJoin after creating an empty heap,
which gives us the following graph:

16 WONYEOL LEE JINEON BAEK SUNGWOO PARK

An application of the rule L to T — -l at heap w generates two new goals, and the
interesting case produces -l as a true formula at the same heap (where we omit T — —l):

By applying the logical rules to heap w and the propagation rule Prope, we obtain the
following graph:

=] [Ed [m=d

Uz =€ ‘ulie‘ ‘vlis‘ ‘Ugﬁe‘

Now we can either apply the propagation rule Prope# to heap w or use the rule NormPC
to complete the proof.

5. ADMISSIBILITY OF CUT
We state the admissibility of cut in Pgsy, as follows:

Theorem 5.1 (Admissibility of cut).
Fe;X | IL[I = A,C]" and ©;% || IL, [I’,C = A]”, then ©; % || I, [’ = A]".

Theorem [5.1] assumes a few properties, such as weakening and contraction, of the expression
contradiction judgment © - L (for which we do not provide inference rules). In particular,
we assume its own admissibility of cut: ©1,0 F 1 and Oy, =0 F 1 imply ©1, 02 - 1 where
=6 denotes the negation of 6.

To prove Theorem we generalize its statement as follows:

PI‘OpOSitiOIl 5.2. If @1; X1 ” Hl, [Fl - Al,C]w and @2; Yo H Hg, [FQ,C - Ag]w,
then @1,@2; i, 20 H II; Wl [Fl,rg — Al,Ag]w.

Here II; W1l denotes the result of combining heap sequents for the same heap variable.
In conjunction with the contraction property for formulas, Proposition [5.2] implies Theo-

rem [B.1]

6. SOUNDNESS OF Psr,

This section first proves the soundness of the proof system Pgy, with respect to separation
logic, and then explains that Pgsy, is not complete with respect to separation logic. From
this section, metavariable W denotes world sequents and heap variables directly refer to
heaps.

The soundness property states that a derivation of a world sequent means that its
semantic interpretation is self-contradictory. As a special case, we obtain Theorem

Theorem 6.1 (Soundness). If -;- || [= A]", then = A.

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 17

The key step in the proof of soundness is to show that in any inference rule of Pgy,, the
world sequent in the conclusion is either self-contradictory in itself or semantically implies
the disjunction of all world sequents in the premise. Given a stack S, let us write [W]g
for the interpretation of world sequent W according to the semantics of separation logic
(which is formally defined below). We wish to prove that a derivation of W implies =[W]g,
i.e., [W]s is self-contradictory, for any stack S. Suppose that the last inference rule in the
derivation of W is not an axiom and has world sequents W7, --- | W), in its premise (n > 1).
By induction hypothesis, we have =[W1]s,- -+, =[W,]s, or equivalently, A;—; ... , =[Wi]s.
Then, by proving that [W]s implies \/;—1 ... ,, [Wi]s, we prove that A;—; ... , ~[W;i]s implies
—[W]s. Now =[W]s immediately follows.

Formally we define [W]g using three auxiliary semantic functions [f]s, [¢]s, and [7]s,
all of which follow our intuition on world sequents given in Section [3.1

[E=FETs = [E]ls=][ETs
[E#E)s = [E]ls#[E]s

[w=¢€ls = w=e

[w#es = wihe
[w=[l—Ells = w={[l]s+— [E]s)
[w#lo Ells = w# (s [E]s)
[w=w;ows]]ls = w=wows

[T = A]"]s Aaer (S,w) E AN Apea (S,w) E B
[©:;2 [s = Ageo [0]s A Aoesols A Aren [7]s

Now we prove the key step in the proof of soundness:

Lemma 6.2. For every inference rule with the conclusion W and the premise consisting of
Wi, -+, Wy, it holds that [W]s implies \/;—; ... , [Wi]s for any stack S. If n = 0, we have
—[W]s.

As a corollary, we prove that a derivation of a world sequent means that its semantic
interpretation is self-contradictory.

Corollary 6.3. If there is a derivation of a world sequent W in Pgy,, then =[W]g holds
for any stack S. For the rule ExpCont, we assume that © - L implies —=[© F L]g.

Then a derivation of ;- || [= A]" implies (S, w) | A:
Sl = A"]s = ~(Sw) A = (S,w) A
Since w denotes an arbitrary heap, we have = A and Theorem follows.

Although Pgy, is sound with respect to separation logic, it is not complete. That is, a
valid formula in separation logic may not have a proof of its negation in Pgy: | A does
not always imply -;- || [= A]". Below we illustrate a few properties of Psy, with such
formulas.

First, in Pgp,, we cannot assume the existence of a non-empty heap or an arbitrary
singleton heap outside a given heap. Consider the following formulas:

(=l —«1) (6.1)
| D =([l = E] [l — E)) (6.2)

Formula states that any heap can be merged with a non-empty heap, and Formula
states that an empty heap can be merged with an arbitrary singleton heap. Thus these
formulas, all valid in separation logic, essentially state that there always exist a non-empty

18 WONYEOL LEE JINEON BAEK SUNGWOO PARK

heap and an arbitrary singleton heap. They are, however, unprovable in Pgy,, which lacks
the rule capable of creating a non-empty heap or an arbitrary singleton heap then associating
it with other heaps. In contrast, the rules ENew and EJoin allow us to create an empty
heap and associate it with other heaps:

Moreover, in Pgy,, we cannot assume the existence of a prime heap inside a given non-
empty heap, where a heap is prime if and only if it is not empty and cannot be divided into
two smaller non-empty heaps. Consider the following formula:

15 (A A==l =)+ T) (6.3)

Formula [6.3[states that any non-empty heap must contain a prime heap. In separation logic,
this formula is valid since any non-empty heap contains a singleton heap, which is prime.
It is, however, unprovable in Pgy,, which lacks the rule capable of creating a singleton heap
inside a non-empty heap.

One way to recover the completeness of Pgy, with respect to separation logic is to
introduce additional sound rules. The following rules are examples of such sound rules:

fresh wy,ws O; %, wy =wowy,wy #e || I, [= | [=]
0;% || I R1
fresh wi, ws, O; %, w=wowy,wy = [l =] || I,[= |, [=]*?
fresh wi, wa 0; %, we =wowy,wy = [l E] || II,[= |, [=]*?
0;% || 11 R2
w#eeX freshxyy O;3,w=wowyw =[z—yl| [=][=]"
©;% || 11 R3

The rules R1, R2, and R3 are somewhat extra-logical but still sound because they are based
on the following facts in separation logic, respectively: 1) any heap can be merged with
a non-empty heap; 2) any location [exists either inside or outside a given heap; 3) any
non-empty heap contains a singleton heap. Note that these rules are not admissible in Pgy,
because Formulas andbecome provable in Pgy,U{Ri} for i = 1,2, 3, respectively.

As they do not analyze a given world sequent at all, the rules R1 and R2 preserve the
admissibility of cut of Pgy,. On the other hand, the rule R3 does analyze a given world se-
quent and destroys the admissibility of cut. For example, in Pgr, U{R3}, both world sequents

5ol [Al= (Al A==t x =) % T] " and - || [I, =1 =1 ==], [l => =l —I]* have deriva-
tions, but the combined world sequent -; - || {ﬂl — | = <ﬂ| A = (=l * ﬂl)) * T]w, [l = =l —1]"
does not.

7. PROOF SEARCH STRATEGY SS FOR Py,

This section presents a proof search strategy SS for Pgr,, which always terminates and
is sound but incomplete with respect to Pgy,. We first introduce preliminaries necessary
to explain SS, and then present the details and incompleteness of SS. The proof search
strategy SS exploits the two propagation rules Prope# and Prop—# (which are shown
to be admissible in Section .

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 19

7.1. Preliminaries of SS. In order to ensure the termination of SS, we weaken the rules
*R and —L, at the cost of its completeness with respect to Pgy,, by discarding their principal
formula in the premise. We also introduce an explicit weakening rule (which is admissible)
as a new structural rule:
o is an atomic heap relation ;3 || II
©;%,0 || 11

We use the rule Weaken to eliminate all atomic heap relations at non-terminal heaps when
the propagation rules can produce no more new heap relations. As explained in Section
SS does not need the rules ECancel and Cont o—2.

The design of SS uses two new concepts: disjunctive derivation states and conjunctive
proof goals. A disjunctive derivation state W for a world sequent W is a set of world sequents
that constitute all the leaves in a partial derivation of W. That is, a disjunctive derivation
state ¥ = {Wy,--- ,W,} for a world sequent W means that there is a partial derivation of
the following form:

Weaken

We use a reduction judgment W U/ to mean that such a partial derivation expands
to another partial derivation with disjunctive derivation state ¥’ by an application of a
logical or structural rule R to some world sequent W; (1 < i < n). That is, we have
V=0 — (W u{Wl, ... Wm} with:

wtl ... wm

3

We write ¥ —* U’ for the reflexive and transitive closure of .

A conjunctive proof goal €2 is a set of disjunctive derivation states for a common world
sequent, and represents a set of partial derivations that have been found out by some proof
search strategy for Pgy, until some point. Given a logical or structural rule R, we use a

reduction judgment 2 £ O to mean that we can generate Q' by applying the rule R to
some disjunctive derivation state ¥ in Q. That is, we have ' = Q — {V} U {¥},--- ¥/}

and ¥ & V! for i = 1,--- ,n. If R is the rule xR or —L, we have n > 1 and produce each
U’ by focusing on the same formula in the same heap sequent in the same world sequent in
U. For all the other rules, we have n = 1 and replace ¥ by ¥}. We write Q ~~* Q' for the
reflexive and transitive closure of ~-.

By the definition of Q ~* €/, formulating a proof search strategy for Psy, only needs to
explain how to construct a reduction sequence of conjunctive proof goals. That is, in order
to explain how SS searches for a derivation of a world sequent W = +;- || [= A]", we
only need to demonstrate how to construct conjunctive proof goals €2y, --- , €, such that
[V} 7 Qp v o ® Oy

In order to concisely describe properties of graphs of heaps, we introduce several nota-
tions:

20 WONYEOL LEE JINEON BAEK SUNGWOO PARK

e w /' u means that there is a sequence of zero or more child-parent relations from
heap w to heap w in the graph: w = wg, w1 = wy o wp, «*+, Wy, = Wy_1 0 wW,,_4, and
w, = u for n > 0. Hence, if w # u, heap w is a descendant of heap u, or equivalently,
heap u is an ancestor of heap w. Note that we allow w 7 w.

e w] means that w is a root heap, i.e., there is no heap relation v = w o v.

e w71 means that w is a terminal heap, i.e., there is no heap relation w = u o v.

e T'(w) denotes the set of terminal descendants of heap w, i.e., T(w) = {v|v?T and v 7 w}.

We assume that heap relations in every world sequent induce not only a graph of heaps
but also a unique empty heap w, (with heap relation we = €) that is separate from the graph.
This assumption is safe because we can always generate such a unique empty heap with the
rule ENew if there is none, and combine multiple empty heaps with the rule NormEmpty if
there are many. We classify world sequents according to the property of graphs of heaps
induced by their heap relations (without considering its special empty heap we) as follows:

1. Well-formed: if w = wi o wy, then w, wy, and wy are all distinct.

2. Non-cyclic: 7 is a partial ordering on heaps.

3. Elementary: well-formed, non-cyclic, and if w = wy o wa, then T(wi) N T(we) = .
4. Consistent: elementary, and if w = u; o ug and w = vy o vy, then T'(uq) U T'(ug) =

T(Ul) U T(UQ).

Full: consistent, and for any root heap u and any non-empty set S C T'(u), there
exists at least one heap w with T'(w) = S.

6. x-ready for heap w: full, and for any pair of non-empty sets S1,S2 C T(w) such
that S NSy = @ and S; U S = T(w), there exist heaps w; and wy such that
w = w; 0wy with T(w;) = 51 and T'(wy) = So.

7. —-ready for heap w: full, and for any root heap u with w 7 u and any pair of
non-empty sets Si, Se C T'(u) such that T(w)NS; = @ and T'(w) US; = S, there
exist heaps w; and wg such that wy = w o w; with T'(w;) = 51 and T'(wz) = So.

8. Saturated: full, and applications of the propagation rules produce no more new heap
relations.

9. Sanitized: full, and non-terminal heaps have no atomic heap relations.

10. Normalized: sanitized with no empty heaps, and for any root heap v and any non-
empty set S C T'(u), there exists a unique heap w with T'(w) = S.

11. Expanded: obtained by applying only the logical rules except xR and —L to some
consistent world sequent.

ot

7.2. Proof search strategy SS. We now explain how SS searches for a derivation of a
world sequent W = ;- || [= A]" (see Figure[d)). Let Q be any conjunctive proof goal such
that every world sequent in € is consistent. We describe how SS applies the rules in Pgr,
to obtain another conjunctive proof goal €, consisting only of consistent world sequents,
with Q ~*),

First we repeatedly apply the logical rules other than the rules xR, —L, 1L, and ExpCont
in order to obtain expanded world sequents from initial /consistent to expanded), until we
cannot apply the rules anymore. Let Q' be the resultant conjunctive proof goal, consisting
of expanded world sequents, with Q ~* QL.

Suppose that there exist a disjunctive derivation state U! € Q! a world sequent W' €
Ul and a heap w in W' such that W' contains a false formula A x B (or a true formula
A —x B) about w. In this case, we first apply a series of structural rules to W1 in order

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 21

Assoc Assoc
full
Dic consistent *-ready/ pro;r)iiitlon
ISpx —-ready i
O logical expanded saturated
L= rules
initial
logical rules Weaken
consistent sanitized
normalized
‘*R/—*L, EJoin, NormPC normalization rules, Assoc

‘ 1L, ExpCont, heap contradiction rules

contradiction

Figure 4: Proof search strategy SS

to obtain normalized world sequents (from expanded to normalized), which yields another
disjunctive derivation state Wy1 such that: 1) {W!} —* Uy1; 2) every world sequent in
Uy is normalized and *-ready (or —x-ready) for w. We can always construct such Wy
because of the following lemmas and Corollary

Lemma 7.1. For a world sequent W of a particular kind, there exists a corresponding
world sequent W’ of another kind such that {W} —* {W’} by applying only the structural
rules, where one of the following holds:

W is expanded and W' is consistent ((11.| to |4. ',

W is consistent and W’ is full (. 4. to]5.);

W is full and W’ is %-ready for a given heap w 1

W is full and W’ is —*-ready for a given heap w to|7.);

W is saturated and x-ready (—-ready) for a glven heap w, and

W' is sanitized and x-ready (—-ready) for heap w . 8.| to|9.] ,

W is sanitized and *-ready (—-ready) for a given heap w, and
W' is normalized and *-ready (—-ready) for heap w to .

Lemma 7.2. For a world sequent W of a particular kind, there exists a disjunctive deriva-
tion state ¥ such that {W} —* ¥ by applying only the propagation rules, where one of the
following holds:

e IV is *-ready for a given heap w, and

every world sequent in V¥ is saturated and x-ready for heap w to ;
e IV is —x-ready for a given heap w, and

every world sequent in ¥ is saturated and —-ready for heap w to .

Corollary 7.3. For any expanded world sequent W and heap w, there exists a disjunctive
derivation state W such that:

e {W} —* U by applying only the structural rules;
e U contains only normalized world sequents that are also *-ready or —x-ready for
heap w.

22 WONYEOL LEE JINEON BAEK SUNGWOO PARK

By letting U2 := W! — {W1} U U1, we have U * U2, Next we choose a world sequent
W2 € WUyn and apply the rule xR (or —L) to W2, in order to obtain consistent world
sequents (from normalized to consistent), in the following way:

e Suppose that w = w, holds and W? contains a true formula A — B about w. Let
wy,- - ,w, denote all heaps in W? (including w). After applying the rule EJoin
to create heap relations w; = w;ow (¢ = 1,---,n), we apply the rule L to the
true formula A — B for w; = w; o w, and then apply the rule NormPC to remove
w; = w; o w so that we have {W?} —* Wy .

e Otherwise we apply the rule xR (or —L) to a false formula A x B (or a true formula
A — B) about heap w for each heap relation of the form w = u; o v; in w32 (i =
1,---,n — 1) so that we have {W?} Uy ;. Moreover, after applying the rule
EJoin to create a heap relation w = w o we, we apply the rule xR (or —L) to the
same formula for w = w o w,, and then apply the rule NormPC to remove w = w o w,
so that we have {W?} —* Uy .

By letting W3 := U2 — {W?} U Uy, (i=1,---,n)and @ = Q' — {¥} U {0} ... W2}
we have U2 —* U3 (i = 1,--- ,n) and thus Q! ~* . Since every world sequent in ' is
consistent, we can repeat the above process of rule applications.

Suppose now that every world sequent in Q! contains no false formula A+ B and no
true formula A — B. In this case, we first apply a series of structural rules to Q! as in
Corollary in order to obtain normalized world sequents (from expanded to normalized),
which yields Q2 satisfying that: 1) Q' ~* Q2; 2) every world sequent in 2 is normalized.
As no formulas other than | remain in 92, we attempt to generate a logical contradiction
by applying the rules LL, ExpCont, and the heap contradiction rules (from normalized to
contradiction). After checking whether there is a logical contradiction, SS completes the
proof search. We remark that for any normalized world sequent, there is a simple way to
apply the rules 1L, ExpCont, and the heap contradiction rules to the world sequent, which
always terminates and is complete with respect to Psy,. We also remark that the heap
contradiction rules are, in fact, complete with respect to separation logic in the following
sense:

Proposition 7.4 (Completeness of the heap contradiction rules).

For a normalized world sequent W with no formulas other than L, if =[IW]gs holds for
any stack .S, then we can construct its derivation using only the rules 1L, ExpCont, and the
heap contradiction rules. For the rule ExpCont, we assume that —=[© - 1]g implies © - L.

In this way, SS constructs a reduction sequence of conjunctive proof goals, starting from
{{W}}. Moreover SS always terminates because it eventually decomposes all formulas in
W other than L.

7.3. Incompleteness of SS. Although SS§ is a sound proof search strategy which always
terminates, it is incomplete with respect to Pgr,. That is, there exists some formula that
has a proof in Pgy, but is not provable with SS. The following is an example among such
formulas (where [# I'):

(mlx=l) D (A* A), where A ==IA—([l = E]x[I' = E]). (7.1)

Formula is valid in separation logic because: (1) if a given heap consists of 2 (or > 4)
singleton heaps, then it can be divided into two disjoint heaps, a singleton heap and a heap
consisting of 1 (or > 3) singleton heap(s); (2) if a given heap consists of 3 singleton heaps,

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 23

then it can be divided into two disjoint heaps, a singleton heap and a heap containing
exactly 2 locations different from {I,1'}. It is easy to check that Formula has a proof in
Psy, but is not provable with SS.

The incompleteness of SS with respect to Pgy, is mainly due to its use of the weakened
rules xR and —L. For some formula (e.g., Formula[7.1)), the only way to build its proof in
Pgsy, is by applying the original rules xR and —L more than once to the same formula. In
such a case, SS cannot find its proof because it uses the weakened rules xR and —L that
discard their principal formula in the premise, thus forestalling repeated applications of the
same rule to the same formula. If we use the original rules xR and —L instead, the proof
search space of SS expands, but at the cost of its termination property.

8. DISCUSSION

Our prototype implementation of Pgy, (without first-order formulas) is based on SS, but
with a few changes. In particular, it internally uses a different type of normalized world
sequents which maintain a unique heap corresponding to each non-empty set of terminal
heaps, but permit unknown relations between heaps. The decision is based on the ob-
servation that it is the rule Disjx (for eliminating unknown relations between heaps) that
contributes the most to the complexity of graphs of heaps. Thus it selectively applies the
rule Disj*x only when it cannot complete the proof search otherwise.

Our experience with the prototype implementation of Pgy, shows that it allows us to
incorporate new logical connectives and predicates in a principled way without having to
introduce additional structural rules. As an example, consider an overlapping conjunction
AwB by Hobor and Villard [14] which can be defined in the framework of Pgy, as follows:

e AW B is true at heap w iff. w = wy o vy, w = vy 0 we, w1 = vy O U, Wy = U 0 Vg, and
A is true at heap wy and B is true at heap ws for some heaps wq, ws, v1, v9, and u.

o AWB is false at heap w iff. w = wy o vy, w = v1 0 wo, w1 = v1 o u, and wy = u 0 Vy
implies that A is false at heap w; or that B is false at heap ws for any heaps wi,
wa, V1, V2, and u.

We directly translate this definition into two inference rules for w:

fresh wy, w2,v1, V2, U

[A:']WIv
wﬁwlovg, [B:>']w2,
w = vy 0wy, [= ",
wi v o =
0;%, wy=uovy |II,[Il = A]Y, [="
0.3 [IL[I,AwB — A ol
w = w1 0 Vg,
w = v1 0 Wy, = A, Aw B]", = A, Aw B]",
wy = vy ou, [= Ay, A", T = A",
{wa=wuowvy } CX O;% || T, [y = Ag]™” ©:;X || IO, [y = Ag, B]*?

[— A, Aw B]", “R

;% || I, ' = A",
[FQ — A2]w2

24 WONYEOL LEE JINEON BAEK SUNGWOO PARK

Note that we obtain the rules WL and WR exactly in the same way that we derive the
rules xL and xR from the interpretation of multiplicative conjunction x. The only difference
is that we create five fresh heaps in the rule WL and try to detect a subgraph consisting of six
existing heaps in the rule wR. Equally important is that we need no additional structural or
heap contradiction rules because overlapping conjunction does not require new forms of heap
relations. Thus, in principle, it is relatively easy to incorporate overlapping conjunction into
our prototype implementation of Pgy,. Overall we may think of Pgy, as a highly extensible
proof system for separation logic.

9. RELATED WORK

9.1. Automated verification tools based on separation logic. Separation logic has
been the basis for a number of automated verification tools targeting programs using mu-
table data structures. The first such tool is Smallfoot by Berdine et al. [3] which aims
to test the feasibility of automated verification using separation logic. To achieve full au-
tomation, it permits no pointer arithmetic and verifies only shape properties of linked lists
and trees. Space Invader by Distefano et al. [8] permits pointer arithmetic by integrating
the abstract interpretation method into the symbolic execution method in [4]. THOR by
Magill et al. [21] is an extension of Space Invader which is capable of tracking the length of
linked lists. SLAyer by Berdine et al. [1] is another extension of Space Invader which uses
higher-order predicates to express common properties of nodes in linked lists. The use of
higher-order predicates enables SLAyer to verify shape properties of composite linked lists
such as linked lists of circular linked lists.

There are also several tools supporting arbitrary data structures. HIP by Nguyen and
Chin [23] allows users to specify invariants on arbitrary data structures in terms of inductive
predicates. Since checking these invariants usually relies on basic properties of inductive
predicates that are easy to prove but difficult to discover automatically, HIP requires users
to explicitly state such properties in the form of lemmas, which are automatically proven
and then applied as necessary. Similarly to HIP, VeriFast by Jacobs et al. [16] relies on
user-supplied inductive predicates and lemmas. Unlike HIP, however, VeriFast requires
users to provide proofs of these lemmas and specify when to apply them. jStar by Distefano
and Parkinson [9] is an extension of Space Invader which exploits user-supplied abstraction
rules in order to support arbitrary data structures. Its distinguishing feature is the ability to
infer loop invariants automatically. Xisa by Chang and Rival [7] takes a different approach
by indirectly specifying invariants on data structures with validation code. Xisa analyzes
validation code to extract inductive predicates for describing invariants as well as lemmas
for describing their basic properties. Since validation code can be written in common
programming languages, users of Xisa do not need the expertise to specify invariants of
interest in terms of inductive predicates.

All these tools use as their logical foundation not full separation logic but only its
decidable fragment by Berdine et al. [2], which does not include separating implication —x.
As shown by Ishtiaq and O’Hearn [15], lack of separating implication implies no support
for backward reasoning by weakest precondition generation for those programs performing
heap assignments or allocation. As a result, these tools allow only forward reasoning based
on symbolic execution as in [4] and do not demonstrate the full potential of separation logic
in program verification.

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 25

9.2. Proof search in full separation logic. Despite the practical importance of sepa-
rating implication, proof search in full separation logic has not drawn much attention from
researchers. Calcagno et al. [6] present a translation from propositional separation logic to
first-order logic (with only propositional connectives and no multiplicative connectives) for
which a decision procedure already exists. The labelled tableau calculus for separation logic
by Galmiche and Méry [12] supports both separating conjunction and separating implica-
tion. Similarly to our proof system Pgy,, their calculus combines both syntactic (tableau)
and semantic (labelled) formulations and uses labels to directly refer to heaps. Although
it is shown to be sound and complete, their calculus does not give rise to a proof search
strategy. Specifically, in order to check that all branches in a tableau are logically or struc-
turally inconsistent, we need two semantic functions, a measure and an interpretation, for
each branch. Their calculus, however, does not explain how to construct such semantic
functions for each branch and it is not clear how to extract a concrete proof search strategy.

The closest proof system to ours is the nested sequent calculus Sggy for Boolean BI
by Park et al. [24], which inspired the overall design of Pgy,. Similarly to world sequents
in Psy,, sequents in Sggy use a truth context consisting of true formulas and a falsehood
context consisting of false formulas, and both systems are based on the principle of proof by
contradiction. Because of the similarity in syntactic formulations, their approach to dealing
with separating conjunction and separating implication in Sggr equally applies to our
setting for Pgr,, which is not surprising considering that separation logic is just an instance
of Boolean BI with additional restrictions on the semantic structure. The structural rules
of Pg1,, however, are specific to separation logic and are designed independently of Sggr.
Since Sppr allows propositional variables, we may use its theorem prover as a supplementary
system for our implementation of Pgy,.

For theorem provers based on the decidable fragment of separation logic by Berdine et
al. [2] (without separating implication), see, for example, SeLoger [I3] and SLP [22]. For
an isomorphism between (intuitionistic) separation logic and implicit dynamic frames, see
[25].

10. CONCLUSION

We have presented a proof system Pgy, for full separation logic with separating implication.
Considering the potential benefit of separating implication, we envision that program ver-
ification systems in the future will provide separating implication and support backward
reasoning by weakest precondition generation for their scalability in program verification.
We also envision that proof assistants can interface with theorem provers for separation
logic and provide a powerful automation tactic for dealing with logical connectives from
separation logic. When extended with inductively defined predicates, Psy, may serve as a
practical foundation for such systems.

REFERENCES

[1] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn, Thomas Wies, and
Hongseok Yang. Shape analysis for composite data structures. In Proceedings of the 19th International
Conference on Computer Aided Verification (CAV), pages 178-192, 2007.

[2] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of separation logic. In
Proceedings of the 24th International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 97-109, 2004.

26

3]

[4]

[5]

(12]

(13]

(14]

(15]

20]

(21]

WONYEOL LEE JINEON BAEK SUNGWOO PARK

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In Proceedings of the 4th International Conference on Formal Methods
for Components and Objects (FMCO), pages 115-137, 2005.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with separation logic. In
Proceedings of the Third Asian Conference on Programming Languages and Systems (APLAS), pages
52-68, 2005.

Cristiano Calcagno and Dino Distefano. Infer: an automatic program verifier for memory safety of
C programs. In Proceedings of the Third international conference on NASA Formal methods, pages
459-465, 2011.

Cristiano Calcagno, Philippa Gardner, and Matthew Hague. From separation logic to first-order logic.
In Proceedings of the 8th International Conference on Foundations of Software Science and Computation
Structures (FOSSACS), pages 395-409, 2005.

Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In Proceedings of the 35th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
247-260, 2008.

Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis based on separation
logic. In Proceedings of the 12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 287-302, 2006.

Dino Distefano and Matthew J. Parkinson. jStar: towards practical verification for Java. In Proceed-
ings of the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and
Applications (OOPSLA), pages 213-226, 2008.

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras and
share accounting. In Proceedings of the 7th Asian Symposium on Programming Languages and Systems
(APLAS), pages 161-177, 2009.

Kamil Dudka, Petr Miiller, Petr Peringer, and Tomas Vojnar. Predator: a tool for verification of low-
level list manipulation. In Proceedings of the 19th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 627-629, 2013.

Didier Galmiche and Daniel Méry. Tableaux and resource graphs for separation logic. Journal of Logic
and Computation, 20:189-231, 2010.

Christoph Haase, Samin Ishtiaq, Joél Ouaknine, and Matthew J. Parkinson. SeLoger: A tool for graph-
based reasoning in separation logic. In Proceedings of the 25th International Conference on Computer
Aided Verification (CAV), pages 790-795, 2013.

Aquinas Hobor and Jules Villard. The ramifications of sharing in data structures. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 523-536, 2013.

Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures. In
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 14-26, 2001.

Bart Jacobs, Jan Smans, and Frank Piessens. VeriFast: Imperative programs as proofs. In In VSTTE
Workshop on Tools & Experiments, pages 5968, 2010.

Neelakantan R. Krishnaswami. Reasoning about iterators with separation logic. In Proceedings of the
2006 Conference on Specification and Verification of Component-based Systems (SAVCBS), pages 83-86,
2006.

Dominique Larchey-Wendling and Didier Galmiche. The undecidability of boolean BI through phase
semantics. In Proceedings of the 2010 25th Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 140-149, 2010.

Wonyeol Lee and Sungwoo Park. A proof system for separation logic with magic wand. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 477-490, 2014.

Toshiyuki Maeda, Haruki Sato, and Akinori Yonezawa. Extended alias type system using separating
implication. In Proceedings of the 7th ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI), pages 29-42, 2011.

Stephen Magill, Josh Berdine, Edmund M. Clarke, and Byron Cook. Arithmetic strengthening for shape
analysis. In Proceedings of the 14th International Static Analysis Symposium (SAS), pages 419-436,
2007.

(22]

A PROOF SYSTEM FOR SEPARATION LOGIC WITH MAGIC WAND 27

Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic + superposition calculus =
heap theorem prover. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 556-566, 2011.

Huu Hai Nguyen and Wei-Ngan Chin. Enhancing program verification with lemmas. In Proceedings of
the 20th International Conference on Computer Aided Verification (CAV), pages 355-369, 2008.
Jonghyun Park, Jeongbong Seo, and Sungwoo Park. A theorem prover for Boolean BI. In Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 219-232, 2013.

Matthew J. Parkinson and Alexander J. Summers. The relationship between separation logic and im-
plicit dynamic frames. In Proceedings of the 20th European Conference on Programming Languages and
Systems (ESOP), pages 439-458, 2011.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the
17th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 55-74, 2002.

Hongseok Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite graph mark-
ing algorithm. In Proceedings of the 1st Workshop on Semantics, Program Analysis, and Computing
Environments for Memory Management, pages 41-68, 2001.

	1. Introduction
	2. Semantics of separation logic
	3. Proof system PSL for separation logic
	3.1. World sequents
	3.2. Logical rules of PSL
	3.3. Structural rules of PSL
	3.4. Heap contradiction rules of PSL
	3.5. Properties of PSL

	4. Examples of proving world sequents
	4.1. (([l][l']) ([l][l']))
	4.2. AAA where A = (-I)

	5. Admissibility of cut
	6. Soundness of PSL
	7. Proof search strategy SS for PSL
	7.1. Preliminaries of SS
	7.2. Proof search strategy SS
	7.3. Incompleteness of SS

	8. Discussion
	9. Related work
	9.1. Automated verification tools based on separation logic
	9.2. Proof search in full separation logic

	10. Conclusion
	References

