
Name: Hemos ID:

CSE-321 Programming Languages 2014
Final

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Total

Score

Max 15 12 14 14 30 15 100

• There are six problems on 12 pages in this exam.

• The maximum score for this exam is 100 points.

• Be sure to write your name and Hemos ID.

• You have three hours for this exam.

1

1 Inductive definitions of matched parentheses [15 points]

Consider the following system from the course notes where s mparen means that s is a string of matched
parentheses.

ε mparen Meps
s mparen

(s) mparen
Mpar s1 mparen s2 mparen

s1 s2 mparen Mseq

In order to show that if s mparen holds, s is indeed a string of matched parentheses, we introduce a
new judgment k � s where k is a non-negative integer:

k � s ⇔ k left parentheses concatenated with s form a string of matched parentheses
⇔ ((· · · (︸ ︷︷ ︸

k

s is a string of matched parentheses

The idea is that we scan a given string from left to right and keep counting the number of left parentheses
that have not yet been matched with corresponding right parentheses. Thus we begin with k = 0,
increment k each time a left parenthesis is encountered, and decrement k each time a right parenthesis
is encountered:

0� ε
Peps

k + 1� s
k � (s

Pleft
k − 1� s k > 0

k �)s
Pright

The second premise k > 0 in the rule Pright ensures that in any prefix of a given string, the number of
right parentheses may not exceed the number of left parentheses. Now a judgment 0� s expresses that
s is a string of matched parentheses. Here are a couple of examples:

0� ε
Peps

1 > 0
1�)

Pright
2 > 0

2�))
Pright

1� ())
Pleft

0� (())
Pleft

(the rule Pright is not applicable because 0 6> 0)
0�)(

1�))(
Pright

0� ())(
Pleft

We wish to prove Theorem 1.2 which states that a string s satisfying 0 � s indeed belongs to the
syntactic category mparen. We use a lemma 1.1 in the proof.

Lemma 1.1. For every natural number k ≥ 0, if ((· · · (︸ ︷︷ ︸
k

s mparen, then ((· · · (︸ ︷︷ ︸
k

()s mparen.

Theorem 1.2. If 0� s, then s mparen.

Prove Theorem 1.2. You may use Lemma 1.1 without proving it. In your proof, place conclusion in
the left and justification in the right as is conventional in the course notes. If we fail to understand your
proof, you get no credit, so try to make your proof as readable as possible. You may write either ((· · · (︸ ︷︷ ︸

k

or (k for a sequence of k (’s.

2

(Answer sheet for Problem 1)

3

2 Abstract machine N [12 points]

In this problem, we design an abstract machine N based on the call-by-need reduction strategy which
you implemented in Assignment 6. The call-by-need reduction strategy is a variant of the call-by-name
strategy: it reduces a function application without evaluating the argument, but is also designed so
that it never evaluates the same argument more than once. To this end, it delays the evaluation of the
argument until the result is needed. Once the argument is fully evaluated, it stores the result in the heap
so that when it needs the argument again, it does not need to repeat the same evaluation.

The heap stores two different kinds of objects: delayed expressions and computed values. When the
machine attempts to evaluates a function application, it first allocates a new delayed expression for the
argument in the heap and then proceeds to reducing the function application. When the machine later
evaluates the variable bound to the argument for the first time, it retrieves the actual argument from the
delayed expression to evaluates it. Then it replaces the delayed expression with a computed value in the
heap so that all subsequent references to the same variable can directly use the result without repeating
the same evaluation.

The abstract machine N uses the following definitions:

type A ::= P | A→A
expression e ::= x | λx :A. e | e e

value v ::=
stored value sv ::=

heap h ::= · | h, l ↪→ sv
environment η ::= · | η, x ↪→ l

frame φ ::=
stack σ ::= 2 | σ;φ
state s ::= h ‖ σ I e @ η | h ‖ σ J v

A value v contains the result of evaluating an expression. A stored value sv is an object to be stored in
the heap h, and thus is either a delayed expression or a computed value.

In the definition of state s:

• h ‖ σ I e @ η means that the machine with heap h and stack σ is currently analyzing e under
environment η.

• h ‖ σ J v means that the machine with heap h and stack σ is currently returning v.

The reduction judgment for the abstract machine N is as follows:

s 7→N s
′ ⇔ the machine makes a transition from state s to another state s′

To define the operational semantics, we use a couple of auxiliary functions. First we define the function
dom(h) which returns the set of all locations in a given heap h:

dom(·) = ∅
dom(h, l ↪→ sv) = dom(h) ∪ {l}

We also use [l ↪→ sv]h for updating the contents of l in h with sv:

[l ↪→ sv′](h, l ↪→ sv) = h, l ↪→ sv′

Complete the definitions of value v, stored value sv, and frame φ. Then define transition rules for the
abstract machine N. You may introduce as many transition rules as you need. Explain your definitions
and transition rules as necessary.

4

(Definitions)

value v ::=

stored value sv ::=

frame φ ::=

(Transition rules)

5

3 Subtypes and recursive types [14 points]

Question 1. [3 points] The rule of subsumption is a typing rule which enables us to change the type
of an expression to its subtype. Complete the rule of subsumption:

Question 2. [3 points] Complete the subtyping rule for product types and function types.

A×B ≤ A′ ×B′
Prod≤

A→B ≤ A′→B′
Fun≤

Question 3. [3 points] Consider the following simply typed λ-calculus extended with recursive types.

type A ::= unit | A→A | A+A | α | µα.A
expression e ::= x | λx :A. e | e e | () | inlA e | inrA e |

case e of inl x. e | inr x. e | foldC e | unfoldC e
typing context Γ ::= · | Γ, x : A | Γ, α type

Given a recursive type C = µα.A, foldC e and unfoldC e convert [C/α]A to C and vice versa,
respectively. Complete typing rules for foldC e and unfoldC e:

C = µα.A Γ ` e : [C/α]A Γ ` C type

Γ ` foldC e : C
Fold

C = µα.A Γ ` e : C

Γ ` unfoldC e : [C/α]A
Unfold

Question 4. [5 points] Translate constructs for a recursive datatype for natural numbers into the
above simply typed λ-calculus.

datatype nat = Zero | Succ of nat

nat = µα.unit+α

Zero = foldnat inlnat ()

Succ e = foldnat inrunit e

case e of Zero⇒ e1 | Succ x⇒ e2 = case unfoldnat e of inl . e1 | inr x. e2

6

4 System F [14 points]

Consider the following definitions for System F:

type A ::= A→A | α | ∀α.A
expression e ::= x | λx :A. e | e e | Λα. e | e JAK

value v ::= λx :A. e | Λα. e
typing context Γ ::= · | Γ, x : A | Γ, α type

Note that a typing context Γ is an ordered set of type bindings and type declarations. We use three
judgments: a reduction judgment, a type judgment, and a typing judgment.

e 7→ e′ ⇔ e reduces to e′

Γ ` A type ⇔ A is a valid type with respect to typing context Γ
Γ ` e : A ⇔ e has type A under typing context Γ

Question 1. [4 points] Write two reduction rules for type applications e JAK:

Question 2. [4 points] Write the typing rules for type abstractions Λα. e and type applications e JAK:

Question 3. [6 points] The proof of type safety of System F needs three substitution lemmas because
there are three kinds of substitutions in System F: type substitution into types, type substitution into
expressions, and expression substitution. State the three substitution lemmas for the proof of type safety
of System F.

1. For substituting types for type variables in types:

2. For substituting types for type variables in expressions:

3. For substituting expressions for variables in expressions:

7

5 Type reconstruction [30 points]

Consider the implicit let-polymorphic type system given in the course notes.

monotype A ::= A→A | α
polytype U ::= A | ∀α.U

expression e ::= x | λx. e | e e | let x = e in e
typing context Γ ::= · | Γ, x : U

type substitution S ::= id | {A/α} | S ◦ S
type equations E ::= · | E,A = A

• We use a typing judgment Γ . e : U to express that untyped expression e is typable with a polytype
U under typing context Γ.

• S · U and S · Γ denote applications of S to U and Γ, respectively.

• ftv(Γ) denotes the set of free type variables in Γ. ftv(U) denotes the set of free type variables in U .

• An auxiliary function GenΓ(A) generalizes monotype A to a polytype after taking into account free
type variables in typing context Γ:

GenΓ(A) = ∀α1.∀α2. · · · ∀αn.A where αi 6∈ ftv(Γ) and αi ∈ ftv(A) for i = 1, · · · , n.

• We write Γ+x : U for Γ−{x : U ′}, x : U if x : U ′ ∈ Γ, and for Γ, x : U if Γ contains no type binding
for variable x.

• The function Unify has a property that if Unify(A1 = A′1, · · · , An = A′n) = S, then S · Ai = S · A′i
for i = 1, · · · , n.

Question 1. [5 points] Write all the typing rules for the typing judgment Γ . e : U . In the rule for
specialization, you may use a type judgment Γ ` A type to mean that A is a valid type with respect to
typing context Γ.

x : U ∈ Γ
Γ . x : U

Var
Γ, x : A . e : B

Γ . λx. e : A→B
→I

Γ . e : A→B Γ . e′ : A
Γ . e e′ : B

→E

8

Question 2. [3 points] Fill in the blank:

Gen·(α→α) = ∀α.α→α

Genx:α(α→α) = α→α

Genx:α(α→β) = ∀β.α→β

Genx:α,y:β(α→β) = α→β

Question 3. [6 points] Complete the unification algorithm Unify:

Unify(·) = id

Unify(E,α = A) = Unify(E,A = α) = if α = A then Unify(E)

else if α ∈ ftv(A) then fail

else Unify({A/α} · E) ◦ {A/α}

Unify(E,A1→A2 = B1→B2) = Unify(E,A1 = B1, A2 = B2)

9

Question 4. [12 points] Complete the algorithm W. Its soundness means that if W(Γ, e) = (S,A),
then S · Γ . e : A.

W(Γ, x) = (id, {~β/~α} ·A) where x : ∀~α.A ∈ Γ and fresh ~β

W(Γ, λx. e) = let (S,A) =W(Γ + x : α, e) in (fresh α)

(S, (S · α)→A)

W(Γ, e1 e2) = let (S1, A1) =W(Γ, e1) in

let (S2, A2) =W(S1 · Γ, e2) in

let S3 = Unify(S2 ·A1 = A2→α) in (fresh α)

(S3 ◦ S2 ◦ S1 , S3 · α)

W(Γ, let x = e1 in e2) = let (S1, A1) =W(Γ, e1) in

let (S2, A2) =W(S1 · Γ + x : GenS1·Γ(A1), e2) in

(S2 ◦ S1 , A2)

Question 5. [4 points] Now we add an untyped fixed point construct fix x. e. The typing rule for
fix x. e is as follows:

Γ, x : A . e : A

Γ . fix x. e : A
Fix

Complete the case for fix x. e in the algorithm W:

W(Γ, fix x. e) = let (S1, A1) =W(Γ + x : α, e) in (fresh α)

let S2 = Unify(S1 · α = A1) in

(S2 ◦ S1 , S2 ·A1)

10

6 Soundness of the algorithm W [15 points]

Prove the soundness of the algorithm W. You may use the following three lemmas without proofs:

Lemma 6.1. If Γ . e : A, then S · Γ . e : S ·A for any type substitution S.

Lemma 6.2. If Unify(A1 = A′1, · · · , An = A′n) = S, then S ·Ai = S ·A′i for i = 1, · · · , n.

Lemma 6.3. If Γ . e : A, then Γ . e : GenΓ(A).

Complete the proof of Theorem 6.4.

Theorem 6.4 (Soundness of W). If W(Γ, e) = (S,A), then S · Γ . e : A.

Proof. By structural induction on e. We consider three cases shown below. We give a complete proof of
the first case and a partial proof of the second case.

Case e = λx. e′:

There exist S1, A1, and a fresh type variable α1 such that:
W(Γ + x : α1, e

′) = (S1, A1) by the definition of W

S1 · Γ + x : S1 · α1 . e
′ : A1 by induction hypothesis on e′

W(Γ, λx. e′) = (S1, (S1 · α1)→A1)
S = S1

A = (S1 · α1)→A1

 by the definition of W

S1 · Γ . λx. e′ : (S1 · α1)→A1 by the rule→I with S1 · Γ + x : S1 · α1 . e
′ : A1

S · Γ . λx. e′ : A from S = S1, A = (S1 · α1)→A1

Case e = e1 e2:

There exist S1 and A1 such that:
W(Γ, e1) = (S1, A1) by the definition of W

S1 · Γ . e1 : A1 by induction hypothesis on e1

There exist S2 and A2 such that:
W(S1 · Γ, e2) = (S2, A2) by the definition of W

S2 · S1 · Γ . e2 : A2 by induction hypothesis on e2

11

Case e = let x = e1 in e2:

12

