CSE-321 Programming Languages 2007
Midterm — Sample Solution

<table>
<thead>
<tr>
<th>Prob 1</th>
<th>Prob 2</th>
<th>Prob 3</th>
<th>Prob 4</th>
<th>Prob 5</th>
<th>Prob 6</th>
<th>Prob 7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>13</td>
<td>11</td>
<td>26</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>
1 SML Programming [13 pts]

Question 1. [3 pts] Give a tail-recursive implementation of fact for the factorial function. Perhaps you will need two lines of code.

\[
\text{fun fact } n = \\
\text{let} \\
\text{fun fact'} 0 m = m \\
| fact' n m = fact' (n - 1) (n * m) \\
\text{in} \\
\text{fact'} n 1 \\
\text{end}
\]

Question 2. [5 pts] Exploit mutable references in SML to implement a factorial function of type \(\text{int \to int} \). You may use the \texttt{fn} keyword, but not the \texttt{fun} keyword. That is, do not use the built-in mechanism for building recursive functions in SML. Your program should evaluate to a factorial function that returns \(n! \) if its argument \(n \) is positive, \(i.e., \ n > 0 \). Perhaps you will need three or four lines of code.

\[
\text{let} \\
\text{val f = ref (fn (x : \text{int}) => 0)} \\
\text{val _ = } \\
\text{f := (fn (n : \text{int}) => if n = 1 then 1 else n * (!f)(n - 1))} \\
\text{in} \\
\text{if} \\
\text{end}
\]
Question 3. [5 pts] A signature SET for sets is given as follows:

```
signature SET =
sig
  type 'a set
  val empty : ''a set
  val singleton : ''a -> ''a set
  val union : ''a set -> ''a set -> ''a set
  val intersection : ''a set -> ''a set -> ''a set
  val diff : ''a set -> ''a set -> ''a set
end

• empty is an empty set.
• singleton x returns a singleton set consisting of x.
• union s s' returns the union of s and s'.
• intersection s s' returns the intersection of s and s'.
• diff s s' returns the difference of s and s': the set of elements in s but not in s'.
```

Give a functional representation of sets by implementing a structure SetFun of signature SET. You may not use the if/then/else construct. Instead use not, andalso, and orelse.

```
structure SetFun : SET where type 'a set = 'a -> bool =
struct
  type 'a set = 'a -> bool

  val empty = fn _ => false

  fun singleton x = fn y => x = y

  fun union s s' = fn x => s x orelse s' x

  fun intersection s s' = fn x => s x andalso s' x

  fun diff s s' = fn x => s x andalso not (s' x)
end
```
2 True/false questions [11 pts]

For true/false questions, a wrong answer gives a penalty equal to the points assigned to the question. Given an answer only if you are convinced!

Question 1. [1 pts] A derivable rule is always admissible. True or false?

True

Question 2. [1 pts] When reducing a closed expression, we may need to use α-conversions. True or false?

False

Question 3. [1 pts] We can prove $\lambda x. e \equiv_\alpha \lambda y. e'$ when $x \neq y$ and $y \in FV(e)$ where $FV(e)$ calculates the set of free variables in e. True or false?

False

Question 4. [1 pts] Given a function f in the untyped λ-calculus, we write f^n for the function applying f exactly n times, i.e., $f^n = f \circ f \cdots \circ f$ (n times). A fixed point of f is also a fixed point of f^n if $n \geq 1$. True or false?

True

Question 5. [1 pts] In the presence of an abort expression $\text{abort}_A e$, type safety of the simply typed λ-calculus continues to hold. True or false?

False

Question 6. [2 pts] The fixed point construct $\text{fix } x : A. e$ makes every type inhabited in the simply typed λ-calculus. True or false?

True

Question 7. [1 pts] If an algorithmic typing judgment covers all possible cases of well-typed expressions, it is said to be “sound.” True or false?

False

Question 8. [3 pts] If a language has no static type system, it cannot be a safe language. True or false?

False
3 Short answers [26 pts]

Question 1. [4 pts] Show the reduction sequence of the following expression under the call-by-name strategy.

\[(\lambda x. x) ((\lambda y. y) (\lambda z. z)) \]

\[\mapsto ((\lambda y. y) (\lambda z. z)) ((\lambda y. y) (\lambda z. z)) \]

\[\mapsto (\lambda z. z) ((\lambda y. y) (\lambda z. z)) \]

\[\mapsto (\lambda y. y) (\lambda z. z) \]

\[\mapsto \lambda z. z \]

Question 2. [2 pts] Suppose that \(v_1\), \(v_2\), and \(v_3\) are all values of type \(A\) in the simply typed \(\lambda\)-calculus. Assuming the lazy reduction strategy, how many steps does it take to fully reduce to a value the following expression?

\[\text{fst} \left((\lambda x: A \times A. \text{fst} x) \left((\lambda x: A. x) \ v_1, v_2 \right), \ v_3 \right) \]

(Given a reduction sequence \(e \mapsto e' \mapsto e'' \mapsto v\), we say that it takes three steps to fully reduce \(e\), for example.)

4 steps

Question 3. [3 pts] Encode the boolean type \(\text{bool}\) and its constructs \(\text{true}\), \(\text{false}\), and \(\text{if} \ e \ \text{then} \ e_1 \ \text{else} \ e_2\) using the sum type \(A+A\), the unit type \(\text{unit}\), and their constructs.

\[\text{bool} = \text{unit}+\text{unit}\]

\[\text{true} = \text{inl}_{\text{unit}}()\]

\[\text{false} = \text{inr}_{\text{unit}}()\]

\[\text{if} \ e \ \text{then} \ e_1 \ \text{else} \ e_2 = \text{case} \ e \ \text{of} \ \text{inl} \ x_1. e_1 \mid \text{inr} \ x_2. e_2\]

Question 4. [2 pts] Give an expression in the extended simply typed \(\lambda\)-calculus that denotes a recursive function \(f\) of type \(A \rightarrow B\) whose formal argument is \(x\) and whose body is \(e\).

\[\text{fix} \ f: A \rightarrow B. \ \lambda x: A. e\]
Question 5. [3 pts] Show the reduction sequence of the expression \(!ref (\lambda x:A. x)\) in the simply typed \(\lambda\)-calculus with mutable references. The reduction begins with an empty store and uses a location \(l\) when allocating a reference. The reduction judgment has the form \(e \mid \psi \mapsto e' \mid \psi'\) where a store \(\psi\) is a collection of bindings of the form \(l \mapsto v\).

\[
\begin{align*}
!ref (\lambda x:A. x) \mid \cdot & \rightarrow \quad ll \mid l \mapsto \lambda x:A. x & \rightarrow \quad \lambda x:A. x \mid l \mapsto \lambda x:A. x
\end{align*}
\]

Question 6. [3 pts] Complete the rule for the store typing judgment \(\psi :: \Psi\) in the simply typed \(\lambda\)-calculus with mutable references.

\[
\begin{align*}
dom(\Psi) = \dom(\psi) & \quad \mid \psi \vdash \psi(l) : \Psi(l) \quad \text{for every } l \in \dom(\psi) & \quad \psi :: \Psi \\
\end{align*}
\]

Store

Question 7. [6 pts] Consider the environment semantics (using the environment evaluation judgment \(\eta \vdash e \mapsto v\)) for the simply typed \(\lambda\)-calculus with a base type \(\text{bool}\):

\[
\begin{align*}
type & A ::= P \mid A \rightarrow A \\
base type & P ::= \text{bool} \\
expression & e ::= x \mid \lambda x:A. e \mid e e \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \\
environment & \eta ::= \cdot \mid \eta, x \mapsto v
\end{align*}
\]

Give an inductive definition of values:

\[
\begin{align*}
\text{value} & \quad v ::= [\eta, \lambda x:A. e] \mid \text{true} \mid \text{false}
\end{align*}
\]

Write the environment evaluation rule for applications:

\[
\begin{align*}
\eta \vdash e_1 \hookrightarrow [\eta', \lambda x:A. e] & \quad \eta \vdash e_2 \hookrightarrow v_2 & \quad \eta', x \hookrightarrow v_2 \vdash e \hookrightarrow v & \quad \text{App}_e
\end{align*}
\]

Question 8. [3 pts] What is the language construct in C++ that realizes parametric polymorphism, although it is “a terribly hacked and inadequate feature” from our point of view?

Templates
4 Inductive definition [5 pts]

Suppose that we use a sequence of digits 0 and 1 as a binary representation of a natural number. As usual, the rightmost digit corresponds to the least significant bit and the leftmost digit corresponds to the most significant bit. For example, 1101 denotes a natural number $2^3 + 2^2 + 2^0 = 13$. A syntactic category bin for such sequences of digits can be inductively defined in several ways, but we use the following definition:

$$\text{bin} \ b ::= \ 0 \ | \ 1 \ | \ b0 \ | \ b1$$

We wish to inductively define a syntactic category pbin for sequences of digits that denote positive natural numbers and also do not have a leading 0. For example, 1101 belongs to pbin, but 01101 does not because it has a leading 0. 0 does not belong to pbin, either, because it does not denote a positive natural number.

Question 1. [3 pts] Give an inductive definition of pbin. You may not introduce auxiliary syntactic categories.

$$\text{pbin} \ p ::= \ 1 \ | \ p0 \ | \ p1$$

Question 2. [2 pts] Give an inductive definition of a function num which takes a sequence p belonging to pbin and returns its corresponding decimal number. For example, we have $\text{num}(10) = 2$ and $\text{num}(1101) = 13$.

$$\text{num}(1) = 1$$
$$\text{num}(p0) = \text{num}(p) \times 2$$
$$\text{num}(p1) = \text{num}(p) \times 2 + 1$$
5 Programming in the λ-calculus [10 pts]

A Church numeral encodes a natural number n as a λ-abstraction \hat{n} which takes a function f and returns $f^n = f \circ f \cdots \circ f$ (n times):

$$\hat{n} = \lambda f. f^n = \lambda f. \lambda x. f f \cdots f x$$

The goal of this problem is to define a logarithm function \log which finds the logarithm in base 2 of a given non-zero natural number (encoded as a Church numeral).

- $\log \hat{k}$ evaluates to \hat{n} if $2^n \leq k < 2^{n+1}$.
- \log never takes $\hat{0}$ as an argument. Hence the result of evaluating $\log \hat{0}$ is unspecified.

Your answers may use the following pre-defined constructs: zero, one, succ, if/then/else, pair, eq, halve, and fix.

- zero and one encode natural numbers zero and one, respectively.

$$\text{zero} = \hat{0} = \lambda f. \lambda x. x$$
$$\text{one} = \hat{1} = \lambda f. \lambda x. f x$$

- succ finds the successor of a given natural number.

$$\text{succ} = \lambda \hat{n}. \lambda f. \lambda x. \hat{n} f (f x)$$

- if e then e_1 else e_2 is a conditional construct.

$$\text{if } e \text{ then } e_1 \text{ else } e_2 = e_1 e_2$$

- pair creates a pair of two expressions, and fst and snd are projection operators.

$$\text{pair} = \lambda x. \lambda y. \lambda b. b x y$$
$$\text{fst} = \lambda p. p (\lambda t. \lambda f. t)$$
$$\text{snd} = \lambda p. p (\lambda t. \lambda f. f)$$

- eq tests two natural numbers for equality.

$$\text{eq} = \lambda x. \lambda y. \text{and} \ (\text{isZero} \ (x \ \text{pred} \ y)) \ (\text{isZero} \ (y \ \text{pred} \ x))$$

- halve \hat{k} returns \hat{k}.

$$\text{halve} = \lambda \hat{n}. \text{fst} (\hat{n} \ (\lambda p. \text{pair} \ (\text{snd} \ p) \ (\text{succ} \ (\text{fst} \ p))))(\text{pair} \ \text{zero} \ \text{zero})$$

- fix is the fixed point combinator.

$$\text{fix} = \lambda F. (\lambda f. F \ \lambda x. (f \ f \ x)) \ (\lambda f. F \ \lambda x. (f \ f \ x))$$
These constructs use the following auxiliary constructs, which you do not need:

\[
\begin{align*}
 \text{tt} & = \lambda t. \lambda f. t \\
 \text{ff} & = \lambda t. \lambda f. f \\
 \text{and} & = \lambda x. \lambda y. x \ y \ \text{ff} \\
 \text{isZero} & = \lambda x. x \ \text{ff} \\
 \text{next} & = \lambda p. \text{pair} (\text{snd} \ p) \ (\text{succ} \ (\text{snd} \ p)) \\
 \text{pred} & = \lambda \hat{n}. \text{fst} (\hat{n} \ \text{next} \ (\text{pair} \ \text{zero} \ \text{zero}))
\end{align*}
\]

Question 1. [3 pts] Use the fixed point combinator to define log. You may use the above pre-defined constructs, but do not expand them into their definitions.

\[
\log = \text{fix} \ (\lambda f. \lambda \hat{n}. \ \text{if eq} \ \hat{n} \ \text{one} \ \text{then} \ \text{zero} \ \text{else} \ \text{succ} \ (f \ (\text{halve} \ \hat{n})))
\]

Question 2. [7 pts] Define log without using the fixed point combinator. You may use the above pre-defined constructs, but do not expand them into their definitions. (You are not allowed to rewrite your answer to the previous question by expanding fix into its definition!)

\[
\log = \lambda \hat{n}. \ \text{snd} \ (\hat{n} \ (\lambda p. \ \text{if eq} \ \text{zero} \ (\text{fst} \ p) \ \text{then} \ \text{p} \ \text{else} \ \text{pair} \ (\text{halve} \ (\text{fst} \ p)) \ (\text{succ} \ (\text{snd} \ p))) \ (\text{pair} \ \hat{n} \ \text{zero}))
\]
Consider the following fragment of the simply typed λ-calculus:

\[
\begin{align*}
\text{type} & \quad A ::= P \mid A \to A \\
\text{base type} & \quad P \\
\text{expression} & \quad e ::= x \mid \lambda x : A. e \mid e e \\
\text{value} & \quad v ::= \lambda x : A. e
\end{align*}
\]

Under the call-by-name (CBN) strategy, an expression reduces to a value using two reduction rules below:

\[
\begin{align*}
\text{Lam} & \quad \frac{e_1 \mapsto e_1'}{e_1 e_2 \mapsto e_1' e_2} \\
\text{App} & \quad \frac{(\lambda x : A. e) \mapsto [e'/x]e}{e \mapsto e'}
\end{align*}
\]

Note that the second subexpression in an application (e.g., \(e_2\) in \(e_1 e_2\)) is not reduced immediately.

In this problem, we will consider a variant of the CBN strategy, called the complete CBN strategy, in which we attempt to reduce the expression \(e\) in \(\lambda x : A. e\) before applying the rule \text{App}. As a result, we reduce \((\lambda x : A. e) \mapsto [e'/x]e\) by the rule \text{App} only when the function body \(e\) is a normal form. Recall that an expression \(e\) is said to be a normal form if no reduction rule is applicable, i.e., if there is no \(e'\) such that \(e \mapsto e'\). Thus, if a reduction sequence terminates, it must end up with a normal form.

Under the complete CBN strategy, a normal form is not necessarily a value. For example, \(\lambda x : A. x\) \((\lambda y : B. y)\) is a normal form (because there is no \(e'\) such that \(\lambda x : A. x\) \((\lambda y : B. y) \mapsto e'\)) and also a value, whereas \(x\) \(y\) is a normal form (because there is no \(e'\) such that \(x\) \(y \mapsto e'\)) but not a value. Conversely a value is not necessarily a normal form. For example, \(\lambda x : A. (\lambda y : B. y)\) \(x\) is a value but not a normal form because its body \((\lambda y : B. y)\) \(x\) reduces to another expression \(x\), as shown in \(\lambda x : A. (\lambda y : B. y)\) \(x \mapsto \lambda x : A. x\). We call a normal form that is a value as a value normal form, and a normal form that is not a value as a non-value normal form.

In order to syntactically distinguish the two kinds of normal forms, we introduce two new syntactic categories:

\[
\begin{align*}
\text{non-value normal form} & \quad xnf ::= x \mid xnf e \\
\text{normal form} & \quad nf ::= xnf \mid \lambda x : A. nf
\end{align*}
\]

Examples of non-value normal forms are \(x\) \((\lambda y : A. y)\) and \(x\) \(y\). Note that a non-value normal form can always be written as \(x\) \(e_1\) \(e_2\) \(\cdots\) \(e_n\). A normal form \(nf\) is either a non-value normal form \(xnf\) or a value normal form \(\lambda x : A. nf'\). Note that the body of a value normal form \(\lambda x : A. nf\) is just a normal form, not necessarily another value normal form.

Question 1. [6 pts] Give the rules for the reduction judgment \(e \mapsto e'\). You need three rules.

\[
\begin{align*}
\text{Lam} & \quad \frac{e_1 \mapsto e_1'}{e_1 e_2 \mapsto e_1' e_2} \\
\text{App} & \quad \frac{(\lambda x : A. e) \mapsto [e'/x]e}{e \mapsto e'}
\end{align*}
\]

\[
\frac{(\lambda x : A. nf) e_2 \mapsto [e_2/x]nf}{\lambda x : A. e \mapsto \lambda x : A. e'}
\]
Question 2. [4 pts] Give the rules for the evaluation judgment \(e \xrightarrow{} nf \) which means that an expression \(e \) evaluates to a normal form \(nf \). You need three rules and we provide one.

\[
\begin{align*}
\text{n}f \xrightarrow{} \text{n}f & \\
\text{e} \xrightarrow{} \text{n}f & \\
\lambda x: A. \text{e} \xrightarrow{} \lambda x: A. \text{n}f
\end{align*}
\]

\[
\begin{align*}
\text{e}_1 \xrightarrow{} \lambda x: A. \text{n}f' & \\
[e_2/x] \text{n}f' \xrightarrow{} \text{n}f & \\
\text{e}_1 \text{e}_2 \xrightarrow{} \text{n}f
\end{align*}
\]

Question 3. [4 pts] Give the definition of evaluation contexts corresponding to the complete CBN strategy.

\[
\text{evaluation context} \quad \kappa \ ::= \quad \square | \kappa \text{ e} | \lambda x: A. \kappa
\]

Question 4. [6 pts] Give the definition of frames and the rules for the state transition judgment \(s \xrightarrow{C} s' \) for the abstract machine \(C \). \(\sigma \triangleright e \) means that the machine is currently reducing \(\sigma[e] \), but has yet to analyze \(e \). \(\sigma \triangleright nf \) means that the machine is currently reducing \(\sigma[nf] \) and has already analyzed \(nf \); that is, it is returning \(nf \) to the top frame of \(\sigma \). Fill in the blank:

\[
\begin{align*}
\text{frame} \quad \phi \ ::= \quad \square | e \triangleleft \lambda x: A. \square \\
\text{stack} \quad \sigma \ ::= \quad \square | \sigma; \phi \\
\text{state} \quad s \ ::= \quad \sigma \triangleright e \quad | \quad \sigma \triangleright nf
\end{align*}
\]

\[
\begin{align*}
\sigma \triangleright nf \xrightarrow{C} \sigma \triangleright nf & \quad \text{Nf}_C \\
\sigma \triangleright e_1 e_2 \xrightarrow{C} \sigma; \square e_2 \triangleright e_1 & \quad \text{Lam}_C \\
\sigma \triangleright \lambda x: A. e \xrightarrow{C} \sigma; \lambda x: A. \square \triangleright e & \quad \text{Body}_A_C \\
\sigma; \lambda x: A. \square \triangleright nf \xrightarrow{C} \sigma \triangleleft \lambda x: A. nf & \quad \text{Body}_R_C \\
\sigma; \square e_2 \triangleleft xnf \xrightarrow{C} \sigma \triangleleft xnf e_2 & \quad \text{Xnf}_C \\
\sigma; \square e_2 \triangleleft \lambda x: A. nf \xrightarrow{C} \sigma \triangleright [e_2/x]nf & \quad \text{App}_C
\end{align*}
\]
7 Type preservation [15 pts]

In this problem, we use the following fragment of the simply typed \(\lambda \)-calculus. We do not consider base types.

| type | \(A := P | A \rightarrow A \) |
|---------------|---------------------------------|
| base type | \(P \) |
| expression | \(e := x \mid \lambda x: A. e \mid e \ e \) |
| value | \(v := \lambda x: A. e \) |
| typing context| \(\Gamma ::= \cdot \mid \Gamma, x: A \) |

\[
\begin{array}{c}
\frac{x : A \in \Gamma}{\Gamma \vdash x : A} \quad \text{Var} \\
\frac{\Gamma, x : A \vdash e : B}{\Gamma \vdash \lambda x : A. e : A \rightarrow B} \quad \text{Lam} \\
\frac{\Gamma \vdash e : A \rightarrow B \quad \Gamma \vdash e' : A}{\Gamma \vdash e \ e' : B} \quad \text{App} \\
\frac{e_1 \mapsto e_1'}{e_1 e_2 \mapsto e_1' e_2} \quad \text{Arg} \\
\end{array}
\]

Question 1. [5 pts] Fill in the blank in the next page to complete the proof of the substitution lemma. We assume that a typing context is an unordered set and that variables in a typing context are all distinct.

Question 2. [10 pts] Fill in the blank in the page after to complete the proof of the type preservation theorem. Unlike the proof given in the Course Notes, we apply rule induction to \(\Gamma \vdash e : A \) instead of \(e \mapsto e' \). You may use Lemmas 7.2 (Substitution) and 7.1 (Inversion).

Lemma 7.1 (Inversion). Suppose \(\Gamma \vdash e : C \).

If \(e = x \), then \(x : C \in \Gamma \).
If \(e = \lambda x : A. e' \), then \(C = A \rightarrow B \) and \(\Gamma, x : A \vdash e' : B \) for some type \(B \).
If \(e = e_1 \ e_2 \), then \(\Gamma \vdash e_1 : A \rightarrow C \) and \(\Gamma \vdash e_2 : A \) for some type \(A \).
Lemma 7.2 (Substitution). If $\Gamma \vdash e : A$ and $\Gamma, x : A \vdash e' : C$, then $\Gamma \vdash [e/x]e' : C$.

Proof. By rule induction on the judgment $\Gamma, x : A \vdash e' : C$. In the third case, we assume (without loss of generality) that y is a fresh variable such that $y \notin \text{FV}(e)$ and $y \neq x$. If $y \in \text{FV}(e)$ or $y = x$, we can always choose a different variable by applying an α-conversion to $\lambda y : C_1. e''$.

Case $y : C \in \Gamma, x : A \vdash y : C$ Var where $e' = y$ and $y : C \in \Gamma$:

$\Gamma \vdash y : C$ from $y : C \in \Gamma$

$\Gamma \vdash [e/x]y : C$ from $x \neq y$

Case $\Gamma, x : A \vdash x : A$ Var where $e' = x$ and $C = A$:

$\Gamma \vdash e : A$ assumption

$\Gamma \vdash [e/x]x : A$ from $[e/x]x = e$

Case $\Gamma, x : A, y : C_1 \vdash e'' : C_2$ where $e' = \lambda y : C_1. e''$ and $C = C_1 \to C_2$:

$\Gamma, y : C_1 \vdash [e/x]e'' : C_2$ by induction hypothesis

$\Gamma \vdash \lambda y : C_1. [e/x]e'' : C_1 \to C_2$ by the rule $\to I$

$[e/x]\lambda y : C_1. e'' = \lambda y : C_1. [e/x]e''$ from $y \notin \text{FV}(e)$ and $x \neq y$

$\Gamma \vdash [e/x]\lambda y : C_1. e'' : C_1 \to C_2$

Case $\Gamma, x : A \vdash e_1 : B \to C$ $\Gamma, x : A \vdash e_2 : B$ $\Gamma, x : A \vdash e_1 \, e_2 : C$ $\to E$ where $e' = e_1 \, e_2$:

$\Gamma \vdash [e/x]e_1 : B \to C$ by induction hypothesis on $\Gamma, x : A \vdash e_1 : B \to C$

$\Gamma \vdash [e/x]e_2 : B$ by induction hypothesis on $\Gamma, x : A \vdash e_2 : B$

$\Gamma \vdash [e/x]e_1 \, [e/x]e_2 : C$ by the rule $\to E$

$\Gamma \vdash [e/x](e_1 \, e_2) : C$ from $[e/x](e_1 \, e_2) = [e/x]e_1 \, [e/x]e_2$
Theorem 7.3 (Type preservation). If $\Gamma \vdash e : A$ and $e \mapsto e'$, then $\Gamma \vdash e' : A$.

Proof. By rule induction on the judgment $\Gamma \vdash e : A$.

Case $\frac{x : A \in \Gamma}{\Gamma \vdash x : A}$ \text{Var} where $e = x$:
There is no expression e' such that $x \mapsto e'$, so we do not need to consider this case.

Case $\frac{\Gamma, x : A_1 \vdash e'' : A_2}{\Gamma \vdash \lambda x : A_1. e'' : A_1 \rightarrow A_2}$ \text{→I} where $e = \lambda x : A_1. e''$ and $A = A_1 \rightarrow A_2$:
There is no expression e' such that $\lambda x : A_1. e'' \mapsto e'$, so we do not need to consider this case.

Case $\frac{\Gamma \vdash e_1 : C \rightarrow A \quad \Gamma \vdash e_2 : C}{\Gamma \vdash e_1 \ e_2 : A}$ \text{→E} where $e = e_1 \ e_2$:
There are three subcases depending on the reduction rule used in the derivation of $e \mapsto e'$. Note that if e_1 is a λ-abstraction, it must have the form $\lambda x : C. e''$ by Lemma 7.1 with $\Gamma \vdash e_1 : C \rightarrow A$.

Subcase $\frac{e_1 \mapsto e_1'}{e_1 \ e_2 \mapsto e_1' \ e_2}$ \text{Lam} where $e' = e_1' \ e_2$:

$\Gamma \vdash e_1' : C \rightarrow A$

by induction hypothesis on $\Gamma \vdash e_1 : C \rightarrow A$ with $e_1 \mapsto e_1'$

$\Gamma \vdash e_1' \ e_2 : A$

from $\Gamma \vdash e_1' : C \rightarrow A \quad \Gamma \vdash e_2 : C$

$\Gamma \vdash e_1' \ e_2 : A$ \text{→E}

Subcase $\frac{e_2 \mapsto e_2'}{(\lambda x : C. e'') \ e_2 \mapsto (\lambda x : C. e'') \ e_2'}$ \text{Lam} where $e_1 = \lambda x : C. e''$ and $e' = (\lambda x : C. e'') \ e_2'$:

$\Gamma \vdash e_2' : C$

by induction hypothesis on $\Gamma \vdash e_2 : C$ with $e_2 \mapsto e_2'$

$\Gamma \vdash (\lambda x : C. e'') \ e_2' : A$

from $\Gamma \vdash \lambda x : C. e'' : C \rightarrow A \quad \Gamma \vdash e_2' : C$

$\Gamma \vdash (\lambda x : C. e'') \ e_2' : A$ \text{→E}

Subcase $\frac{(\lambda x : C. e'') \ v \mapsto [v/x]e''}{\text{App}}$ where $e_1 = \lambda x : C. e''$ and $e_2 = v$ and $e' = [v/x]e''$:

$\Gamma, x : C \vdash e'' : A$

by Lemma 7.1 with $\Gamma \vdash \lambda x : C. e'' : C \rightarrow A$

$\Gamma \vdash [v/x]e'' : A$

by Lemma 7.2 with $\Gamma \vdash v : C$ and $\Gamma, x : C \vdash e'' : A$