CSE-321 Programming Languages 2007
Midterm

<table>
<thead>
<tr>
<th></th>
<th>Prob 1</th>
<th>Prob 2</th>
<th>Prob 3</th>
<th>Prob 4</th>
<th>Prob 5</th>
<th>Prob 6</th>
<th>Prob 7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>13</td>
<td>11</td>
<td>26</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>
1 SML Programming [13 pts]

Question 1. [3 pts] Give a tail-recursive implementation of fact for the factorial function. Perhaps you will need two lines of code.

```sml
fun fact n =
  let
    fun fact' 0 m = m
    | fact' n m = fact' (n - 1) (n * m)
  in
    fact' n 1
  end
```

Question 2. [5 pts] Exploit mutable references in SML to implement a factorial function of type int -> int. You may use the fn keyword, but not the fun keyword. That is, do not use the built-in mechanism for building recursive functions in SML. Your program should evaluate to a factorial function that returns \(n!\) if its argument \(n\) is positive, i.e., \(n > 0\). Perhaps you will need three or four lines of code.

```sml
let
  val f = ref (fn (x : int) => 0)

  val f := (fn (n : int) => if n = 1 then 1 else n * (!f)(n - 1))

in
  !f
end
```
Question 3. [5 pts] A signature SET for sets is given as follows:

```haskell
signature SET =
  sig
    type 'a set
    val empty : ''a set
    val singleton : ''a -> ''a set
    val union : ''a set -> '' a set -> ''a set
    val intersection : ''a set -> '' a set -> ''a set
    val diff : ''a set -> '' a set -> ''a set
  end

• empty is an empty set.
• singleton x returns a singleton set consisting of x.
• union s s' returns the union of s and s'.
• intersection s s' returns the intersection of s and s'.
• diff s s' returns the difference of s and s': the set of elements in s but not in s'.
```

Give a functional representation of sets by implementing a structure SetFun of signature SET. You may not use the if/then/else construct. Instead use not, andalso, and orelse.

```haskell
structure SetFun : SET where type 'a set = 'a -> bool =
  struct
    type 'a set = 'a -> bool

    val empty = ______________________

    fun singleton x = ______________________

    fun union s s' = ______________________

    fun intersection s s' = ______________________

    fun diff s s' = ______________________
  end
```
2 True/false questions [11 pts]

For true/false questions, a wrong answer gives a penalty equal to the points assigned to the question. Given an answer only if you are convinced!

Question 1. [1 pts] A derivable rule is always admissible. True or false?

True

Question 2. [1 pts] When reducing a closed expression, we may need to use α-conversions. True or false?

False

Question 3. [1 pts] We can prove $\lambda x. e \equiv_{\alpha} \lambda y. e'$ when $x \neq y$ and $y \in FV(e)$ where $FV(e)$ calculates the set of free variables in e. True or false?

False

Question 4. [1 pts] Given a function f in the untyped λ-calculus, we write f^n for the function applying f exactly n times, i.e., $f^n = f \circ f \circ \cdots \circ f$ (n times). A fixed point of f is also a fixed point of f^n if $n \geq 1$. True or false?

True

Question 5. [1 pts] In the presence of an abort expression $\text{abort}_A e$, type safety of the simply typed λ-calculus continues to hold. True or false?

False

Question 6. [2 pts] The fixed point construct $\text{fix} x : A. e$ makes every type inhabited in the simply typed λ-calculus. True or false?

True

Question 7. [1 pts] If an algorithmic typing judgment covers all possible cases of well-typed expressions, it is said to be “sound.” True or false?

False

Question 8. [3 pts] If a language has no static type system, it cannot be a safe language. True or false?

False
3 Short answers [26 pts]

Question 1. [4 pts] Show the reduction sequence of the following expression under the call-by-name strategy.

\[(\lambda x. x) ((\lambda y. y) (\lambda z. z))\]

\[\mapsto \quad \text{_____________________________}\]

\[\mapsto \quad \text{_____________________________}\]

\[\mapsto \quad \text{_____________________________}\]

\[\mapsto \quad \text{_____________________________}\]

Question 2. [2 pts] Suppose that \(v_1\), \(v_2\), and \(v_3\) are all values of type \(A\) in the simply typed \(\lambda\)-calculus. Assuming the lazy reduction strategy, how many steps does it take to fully reduce to a value the following expression?

\[\text{fst} \left((\lambda x: A \times A. \text{fst} \, x) \, (\lambda x: A. x) \, v_1, v_2, v_3 \right)\]

(Given a reduction sequence \(e \mapsto e' \mapsto e'' \mapsto v\), we say that it takes three steps to fully reduce \(e\), for example.)

Question 3. [3 pts] Encode the boolean type \texttt{bool} and its constructs \texttt{true}, \texttt{false}, and \texttt{if \(e\) then \(e_1\) else \(e_2\)} using the sum type \(A+A\), the unit type \texttt{unit}, and their constructs.

\texttt{bool} = ________________

\texttt{true} = ________________

\texttt{false} = ________________

\texttt{if \(e\) then \(e_1\) else \(e_2\)} = ________________

Question 4. [2 pts] Give an expression in the extended simply typed \(\lambda\)-calculus that denotes a recursive function \(f\) of type \(A \rightarrow B\) whose formal argument is \(x\) and whose body is \(e\).
Question 5. [3 pts] Show the reduction sequence of the expression ![ref (\(\lambda x : A. x\))] in the simply typed \(\lambda\)-calculus with mutable references. The reduction begins with an empty store and uses a location \(l\) when allocating a reference. The reduction judgment has the form \(e | \psi \mapsto e' | \psi'\) where a store \(\psi\) is a collection of bindings of the form \(l \mapsto v\).

\[
\text{!ref (}\lambda x : A. x\text{) } | \cdot \mapsto \\
\]

Question 6. [3 pts] Complete the rule for the store typing judgment \(\psi :: \Psi\) in the simply typed \(\lambda\)-calculus with mutable references.

\[
\text{dom}(\Psi) = \text{dom}(\psi) \\
\psi :: \Psi \quad \text{Store}
\]

Question 7. [6 pts] Consider the environment semantics (using the environment evaluation judgment \(\eta \vdash e \mapsto v\)) for the simply typed \(\lambda\)-calculus with a base type \text{bool}:

\[
\begin{align*}
\text{type} & \quad A & := & \ P | \ A \rightarrow A \\
\text{base type} & \quad P & := & \ \text{bool} \\
\text{expression} & \quad e & := & \ x | \ \lambda x : A. e | \ e \ e | \ \text{true} | \ \text{false} | \ \text{if} \ e \ \text{then} \ e \ \text{else} \ e \\
\text{environment} & \quad \eta & := & \ \cdot | \ \eta, x \mapsto v
\end{align*}
\]

Give an inductive definition of values:

\[
\text{value} v ::= \left[\eta, \lambda x : A. e \right] | \text{true} | \text{false}
\]

Write the environment evaluation rule for applications:

\[
\eta \vdash e_1 \ e_2 \mapsto v \quad \text{App}_{e}
\]

Question 8. [3 pts] What is the language construct in C++ that realizes parametric polymorphism, although it is "a terribly hacked and inadequate feature" from our point of view?
4 Inductive definition [5 pts]

Suppose that we use a sequence of digits 0 and 1 as a binary representation of a natural number. As usual, the rightmost digit corresponds to the least significant bit and the leftmost digit corresponds to the most significant bit. For example, 1101 denotes a natural number $2^3 + 2^2 + 2^0 = 13$. A syntactic category bin for such sequences of digits can be inductively defined in several ways, but we use the following definition:

$$\text{bin } b ::= 0 | 1 | b0 | b1$$

We wish to inductively define a syntactic category pbin for sequences of digits that denote positive natural numbers and also do not have a leading 0. For example, 1101 belongs to pbin, but 01101 does not because it has a leading 0. 0 does not belong to pbin, either, because it does not denote a positive natural number.

$$\text{pbin } p ::= \underline{\text{------------------------}}$$

Question 2. [2 pts] Give an inductive definition of a function num which takes a sequence p belonging to pbin and returns its corresponding decimal number. For example, we have num(10) = 2 and num(1101) = 13.
5 Programming in the λ-calculus [10 pts]

A Church numeral encodes a natural number n as a λ-abstraction \hat{n} which takes a function f and returns $f^n = f \circ f \cdots \circ f$ (n times):

$$\hat{n} = \lambda f. f^n = \lambda f. \lambda x. f f \cdots f x$$

The goal of this problem is to define a logarithm function \log which finds the logarithm in base 2 of a given non-zero natural number (encoded as a Church numeral).

- $\log \hat{k}$ evaluates to \hat{n} if $2^n \leq k < 2^{n+1}$.
- \log never takes $\hat{0}$ as an argument. Hence the result of evaluating $\log \hat{0}$ is unspecified.

Your answers may use the following pre-defined constructs: zero, one, succ, if/then/else, pair, eq, halve, and fix.

- **zero** and **one** encode natural numbers zero and one, respectively.

 \[
 \text{zero} = \hat{0} = \lambda f. \lambda x. x \\
 \text{one} = \hat{1} = \lambda f. \lambda x. f x
 \]

- **succ** finds the successor of a given natural number.

 \[
 \text{succ} = \lambda \hat{n}. \lambda f. \lambda x. \hat{n} f (f x)
 \]

- if $e \text{ then } e_1 \text{ else } e_2$ is a conditional construct.

 \[
 \text{if } e \text{ then } e_1 \text{ else } e_2 = e e_1 e_2
 \]

- **pair** creates a pair of two expressions, and **fst** and **snd** are projection operators.

 \[
 \text{pair} = \lambda x. \lambda y. \lambda b. b x y \\
 \text{fst} = \lambda p. p (\lambda t. \lambda f. t) \\
 \text{snd} = \lambda p. p (\lambda t. \lambda f. f)
 \]

- **eq** tests two natural numbers for equality.

 \[
 \text{eq} = \lambda x. \lambda y. \text{(isZero } (x \text{ pred } y)) \text{ (isZero } (y \text{ pred } x))
 \]

- **halve** $2 \hat{k}$ returns \hat{k}.

 \[
 \text{halve} = \lambda \hat{n}. \text{fst} (\hat{n} (\lambda p. \text{pair } (\text{snd } p) (\text{succ } (\text{fst } p)))) (\text{pair } \text{zero } \text{zero})
 \]

- **fix** is the fixed point combinator.

 \[
 \text{fix} = \lambda F. (\lambda f. F \lambda x. (f f x)) (\lambda f. F \lambda x. (f f x))
 \]
These constructs use the following auxiliary constructs, which you do not need:

\[
\begin{align*}
 \text{tt} &= \lambda t. \lambda f. t \\
 \text{ff} &= \lambda t. \lambda f. f \\
 \text{and} &= \lambda x. \lambda y. x \ y \ \text{ff} \\
 \text{isZero} &= \lambda x. x (\lambda y. \text{ff}) \ \text{tt} \\
 \text{next} &= \lambda p. \text{pair} (\text{snd} \ p) (\text{succ} (\text{snd} \ p)) \\
 \text{pred} &= \lambda \hat{n}. \text{fst} (\hat{n} \ \text{next} (\text{pair} \ \text{zero} \ \text{zero}))
\end{align*}
\]

Question 1. [3 pts] Use the fixed point combinator to define \(\log \). You may use the above pre-defined constructs, but do not expand them into their definitions.

\[
\log = \text{fix} (\lambda f. \lambda \hat{n}. \text{if eq} \ \hat{n} \ \text{one} \ \text{then zero} \ \text{else succ} (f (\text{halve} \ \hat{n}))))
\]

Question 2. [7 pts] Define \(\log \) without using the fixed point combinator. You may use the above pre-defined constructs, but do not expand them into their definitions. (You are not allowed to rewrite your answer to the previous question by expanding \(\text{fix} \) into its definition!)

\[
\log = \lambda \hat{n}. \text{snd} (\hat{n} (\lambda p. \text{if eq zero} (\text{fst} \ p) \ \text{then} \ p \ \text{else} \ \text{pair} (\text{halve} (\text{fst} \ p)) (\text{succ} (\text{snd} \ p)))) (\text{pair} \ \hat{n} \ \text{zero} \ \text{zero}))
\]
6 Complete call-by-name reduction [20 pts]

Consider the following fragment of the simply typed λ-calculus:

<table>
<thead>
<tr>
<th>type</th>
<th>$A ::= P \mid A \rightarrow A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>base type</td>
<td>P</td>
</tr>
<tr>
<td>expression</td>
<td>$e ::= x \mid \lambda x:A. e \mid e e$</td>
</tr>
<tr>
<td>value</td>
<td>$v ::= \lambda x:A. e$</td>
</tr>
</tbody>
</table>

Under the call-by-name (CBN) strategy, an expression reduces to a value using two reduction rules below:

\[
\frac{e_1 \mapsto e_1'}{e_1 e_2 \mapsto e_1' e_2} \quad \text{Lam} \\
\frac{(\lambda x:A. e) \mapsto [e'/x]e}{(\lambda x:A. e) \mapsto [e'/x]e} \quad \text{App}
\]

Note that the second subexpression in an application (e.g., e_2 in $e_1 e_2$) is not reduced immediately.

In this problem, we will consider a variant of the CBN strategy, called the complete CBN strategy, in which we attempt to reduce the expression e in $\lambda x:A. e$ before applying the rule App. As a result, we reduce $(\lambda x:A. e) e'$ to $[e'/x]e$ by the rule App only when the function body e is a normal form. Recall that an expression e is said to be a normal form if no reduction rule is applicable, i.e., if there is no e' such that $e \mapsto e'$. Thus, if a reduction sequence terminates, it must end up with a normal form.

Under the complete CBN strategy, a normal form is not necessarily a value. For example, $\lambda x:A. x (\lambda y:B. y)$ is a normal form (because there is no e' such that $\lambda x:A. x (\lambda y:B. y) \mapsto e'$) and also a value, whereas $x y$ is a normal form (because there is no e' such that $x y \mapsto e'$) but not a value. Conversely a value is not necessarily a normal form. For example, $\lambda x:A.(\lambda y:B. y) x$ is a value but not a normal form because its body $(\lambda y:B. y) x$ reduces to another expression x, as shown in $\lambda x:A. (\lambda y:B. y) x \mapsto \lambda x:A. x$. We call a normal form that is a value as a value normal form, and a normal form that is not a value as a non-value normal form.

In order to syntactically distinguish the two kinds of normal forms, we introduce two new syntactic categories:

| non-value normal form | $xnf ::= x \mid xnf\ e$ |
| normal form | $nf ::= xnf \mid \lambda x:A.\ nf'$ |

Examples of non-value normal forms are $x (\lambda y:A. y)$ and $x y$. Note that a non-value normal form can always be written as $x \ e_1 \ e_2 \ \cdots \ e_n$. A normal form nf is either a non-value normal form xnf or a value normal form $\lambda x:A. \ nf'$. Note that the body of a value normal form $\lambda x:A. \ nf$ is just a normal form, not necessarily another value normal form.

Question 1. [6 pts] Give the rules for the reduction judgment $e \mapsto e'$. You need three rules.
Question 2. [4 pts] Give the rules for the evaluation judgment \(e \mapsto nf \) which means that an expression \(e \) evaluates to a normal form \(nf \). You need three rules and we provide one.

\[
\text{nf} \mapsto \text{nf} \quad \mapsto \quad \lambda x : A. e \mapsto \text{nf}
\]

Question 3. [4 pts] Give the definition of evaluation contexts corresponding to the complete CBN strategy.

\[
\text{evaluation context } \kappa ::= \quad \text{nf} \mapsto \text{nf}
\]

Question 4. [6 pts] Give the definition of frames and the rules for the state transition judgment \(s \mapsto \text{nf} \) for the abstract machine \(C \). \(\sigma \mapsto e \) means that the machine is currently reducing \(\sigma[\llbracket e \rrbracket] \), but has yet to analyze \(e \). \(\sigma \mapsto \text{nf} \) means that the machine is currently reducing \(\sigma[\llbracket \text{nf} \rrbracket] \) and has already analyzed \(\text{nf} \); that is, it is returning \(\text{nf} \) to the top frame of \(\sigma \). Fill in the blank:

\[
\begin{align*}
\text{frame} & \quad \phi ::= \\
\text{stack} & \quad \sigma ::= \quad | \sigma; \phi \\
\text{state} & \quad s ::= \quad | \sigma \mapsto e | \sigma \mapsto \text{nf} \\
\sigma \mapsto \text{nf} & \mapsto \text{nf} \\
\sigma \mapsto e_1 e_2 & \mapsto \text{nf} \\
\sigma \mapsto \lambda x : A. e & \mapsto \text{nf} \\
\sigma; \lambda x : A. \quad | \quad \text{nf} & \mapsto \text{nf} \\
\sigma; \quad | \text{nf} & \mapsto \text{nf} \\
\sigma; \quad | \lambda x : A. \text{nf} & \mapsto \text{nf}
\end{align*}
\]
7 Type preservation [15 pts]

In this problem, we use the following fragment of the simply typed λ-calculus. We do not consider base types.

type	$A := P \mid A \rightarrow A$
base type	P
expression	$e ::= x \mid \lambda x : A.e \mid e \ e$
value	$v ::= \lambda x : A.e$
typing context	$\Gamma ::= \cdot \mid \Gamma, x : A$

$x : A \in \Gamma \quad \frac{}{\Gamma \vdash x : A}$ [Var]

$\frac{e_1 \mapsto e_1'}{e_1 e_2 \mapsto e_1' e_2'}$ [Lam]

$\frac{\frac{\frac{\Gamma, x : A \vdash e : B}{\Gamma \vdash \lambda x : A.e : A \rightarrow B}}{\rightarrow I} \quad \frac{\frac{\frac{\Gamma \vdash e : A \rightarrow B}{\Gamma \vdash e' : A}}{\rightarrow E}}{\rightarrow E}}{\rightarrow E}$

$\frac{\frac{\frac{\lambda x : A.e \mapsto (\lambda x : A.e) e_2}{e_2 \mapsto e_2'}}{e_2 \mapsto e_2'} \quad \frac{\frac{\frac{\Gamma \vdash e : A \rightarrow B}{\Gamma, x : A \vdash e' : B}}{\text{Arg}} \quad \frac{\frac{\frac{\Gamma \vdash v : [v/x]e}{(\lambda x : A.e) v \mapsto [v/x]e}}{\text{App}}}{\text{App}}}{\text{App}}}{\text{App}}$

Question 1. [5 pts] Fill in the blank in the next page to complete the proof of the substitution lemma. We assume that a typing context is an unordered set and that variables in a typing context are all distinct.

Question 2. [10 pts] Fill in the blank in the page after to complete the proof of the type preservation theorem. Unlike the proof given in the Course Notes, we apply rule induction to $\Gamma \vdash e : A$ instead of $e \mapsto e'$. You may use Lemmas 7.2 (Substitution) and 7.1 (Inversion).

Lemma 7.1 (Inversion). Suppose $\Gamma \vdash e : C$.

If $e = x$, then $x : C \in \Gamma$.

If $e = \lambda x : A.e'$, then $C = A \rightarrow B$ and $\Gamma, x : A \vdash e' : B$ for some type B.

If $e = e_1 \ e_2$, then $\Gamma \vdash e_1 : A \rightarrow C$ and $\Gamma \vdash e_2 : A$ for some type A.

12
Lemma 7.2 (Substitution). If \(\Gamma \vdash e : A \) and \(\Gamma, x : A \vdash e' : C \), then \(\Gamma \vdash [e/x]e' : C \).

Proof. By rule induction on the judgment \(\Gamma, x : A \vdash e' : C \). In the third case, we assume (without loss of generality) that \(y \) is a fresh variable such that \(y \notin \text{FV}(e) \) and \(y \neq x \). If \(y \in \text{FV}(e) \) or \(y = x \), we can always choose a different variable by applying an \(\alpha \)-conversion to \(\lambda y : C_1. e'' \).

Case \(y : C \in \Gamma, x : A \vdash y : C \) \(\text{Var} \) where \(e' = y \) and \(y : C \in \Gamma \):

- \(\Gamma \vdash y : C \)
- \([e/x]y = y \)

\(\) from \(y : C \in \Gamma \)
\(\) from \(x \neq y \)

Case \(\Gamma, x : A \vdash x : A \) \(\text{Var} \) where \(e' = x \) and \(C = A \):

\(\) assumption

\([e/x]x = e \)

Case \(\Gamma, x : A, y : C_1 \vdash e'' : C_2 \) \(\rightarrow \text{l} \) where \(e' = \lambda y : C_1. e'' \) and \(C = C_1 \rightarrow C_2 \):

\(\) by induction hypothesis

\(\) by the rule \(\rightarrow \text{l} \)

\([e/x]\lambda y : C_1. e'' = \) from \(y \notin \text{FV}(e) \) and \(x \neq y \)

Case \(\Gamma, x : A \vdash e_1 : B \rightarrow C \) \(\Gamma, x : A \vdash e_2 : B \) \(\rightarrow \text{E} \) where \(e' = e_1 \ e_2 \):

\(\) by induction hypothesis on \(e_1 \ e_2 \)

\(\) by induction hypothesis on \(e_1 \ e_2 \)

\(\) by the rule \(\rightarrow \text{E} \)

\(\Gamma \vdash [e/x](e_1 \ e_2) : C \)

from \(\)
Theorem 7.3 (Type preservation). If $\Gamma \vdash e : A$ and $e \rightarrow e'$, then $\Gamma \vdash e' : A$.

Proof. By rule induction on the judgment $\Gamma \vdash e : A$.

Case $\frac{x : A \in \Gamma}{\Gamma \vdash x : A}$ where $e = x$:
There is no expression e' such that $x \rightarrow e'$, so we do not need to consider this case.

Case $\frac{\Gamma, x : A_1 \vdash e'' : A_2}{\Gamma \vdash \lambda x : A_1. e'' : A_1 \rightarrow A_2}$ where $e = \lambda x : A_1. e''$ and $A = A_1 \rightarrow A_2$:
There is no expression e' such that $\lambda x : A_1. e'' \rightarrow e'$, so we do not need to consider this case.

Case $\frac{\Gamma \vdash e_1 : C \rightarrow A \quad \Gamma \vdash e_2 : C}{\Gamma \vdash e_1 \ e_2 : A}$ where $e = e_1 \ e_2$:
There are three subcases depending on the reduction rule used in the derivation of $e \rightarrow e'$. Note that if e_1 is a λ-abstraction, it must have the form $\lambda x : C. e''$ by Lemma 7.1 with $\Gamma \vdash e_1 : C \rightarrow A$.

Subcase $\frac{e_1 \rightarrow e'_1 \quad e_2 \rightarrow e'_2}{e_1 \ e_2 \rightarrow e'_1 \ e'_2}$ Lam where $e' = e'_1 \ e'_2$:

\[\text{by induction hypothesis on } \frac{e_1 \rightarrow e'_1}{e_1} \quad \text{with } \frac{e_2 \rightarrow e'_2}{e_2} \]

\[\text{from } \frac{\Gamma \vdash e_1 \rightarrow e'_1 \quad e_2 \rightarrow e'_2 \quad \Gamma \vdash e_1 \ e_2 : A}{\Gamma \vdash e_1 \ e_2 : A} \]

Subcase $\frac{e_2 \rightarrow e'_2}{(\lambda x : C. e'') \ e_2 \rightarrow (\lambda x : C. e'') \ e'_2}$ Lam where $e_1 = \lambda x : C. e''$ and $e' = (\lambda x : C. e'') \ e'_2$:

\[\text{by induction hypothesis on } \frac{e_2 \rightarrow e'_2}{e_2} \quad \text{with } \frac{\lambda x : C. e'' \rightarrow e''}{\lambda x : C. e''} \]

\[\text{from } \frac{\Gamma \vdash e_2 \rightarrow e'_2 \quad \Gamma \vdash (\lambda x : C. e'') \ e_2 : A}{\Gamma \vdash (\lambda x : C. e'') \ e_2 : A} \]

Subcase $\frac{(\lambda x : C. e'') \ v \rightarrow [v/x]e''}{(\lambda x : C. e'') \ v \rightarrow [v/x]e''}$ App where $e_1 = \lambda x : C. e''$ and $e_2 = v$ and $e' = [v/x]e''$:

\[\text{by Lemma 7.1 with } \frac{\lambda x : C. e'' \rightarrow e''}{\lambda x : C. e''} \]

\[\text{by Lemma 7.2 with } \frac{v \rightarrow v}{v} \quad \text{and } \frac{\lambda x : C. e'' \rightarrow e''}{\lambda x : C. e''} \]

\[\square \]