Name: Hemos ID:

CSE-321 Programming Languages 2011 Midterm

	Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Prob 6	Total
Score							
Max	18	7	12	21	28	14	100

- There are six problems on 26 pages in this exam.
- The maximum score for this exam is 100 points.
- Be sure to write your name and Hemos ID.
- In Problems 1 and 2, write your answers exactly as you would type on the screen. The grading for Problems 1 and 2 will be strict (*i.e.*, no partial points).
- When writing individual proof steps in Problems 3 and 5.2, please write *conclusion* in the left blank and *justification* in the right blank, as in the course notes.
- You have three hours for this exam.

1 SML Programming [18 pts]

In this problem, you will implement a number of functions satisfying given descriptions. You should write one character per blank. For example, the following code implements a factorial function.

Question 1. [3 pts] Give a recursive implementation of power. You may use the function List.map and the operator @.

```
(Type) power: 'a list -> 'a list list
```

(Description) power l returns a list consisting of all possible sublists of l. The order of the returned list does not matter.

(Invariant) Elements in an input list are all distinct.

```
(Example) power [1, 2, 3] may return [[1, 2, 3], [1, 2], [1, 3], [1], [2, 3], [2], [3], []].
```



(-	Гур	e) s	umI	Lis	t:	int	t l	ist	: -:	> i	.nt															
(I	Desc	rip	tion) sı	ımL	ist	. 1 1	retu	rns	the	sur	n of	int	egei	s in	l.										
(I	Exai	mpl	e) s	umI	Lis	t [1,	2,	3]	re	turn	ns 6.														
fι	ın	sı	ımI	Lis	st	1	=																			
7	_	+																								
=	<u>_</u>	<u></u>	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_
_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
_	_	_		_	_	_	_	_		_	_	_		_	_		_	_	_	_	_	_	_			
	_		_	_	_	_	_	_	_		_	_		_	_		_	_	_	_	_	_	_		_	
_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
				_	_	_	_			_			_			_	_	_	_	_	_	_	_	_		_
	_	_		_	_	_	_	_	_	_					_			_	_	_	_	_	_	_		
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_			_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_	_	_	_	_	_	_			_	_			_	_				_
e	n	d																								

Question 2. [3 pts] Give a tail recursive implementation of sumList.

(Type) foldr: ('a * 'b -> 'b) -> 'a list -> 'b
(Description) foldr f e l takes e and the last item of l and applies f to them, feeds the function with this result and the penultimate item, and so on. That is, foldr f e $[x_1, x_2,, x_n]$ computes $f(x_1, f(x_2,, f(x_n, e)))$, or e if the list is empty.
Question 3. [3 pts] Complete the following definition of the function map using foldr.
(Type) map: ('a -> 'b) -> 'a list -> 'b list
(Description) map f l takes a function f and a list l and applies f to each element of l . That is, map f $[x_1, x_2,, x_n]$ computes $[f$ x_1, f $x_2,, f$ $x_n]$, or $[$ $]$ if the list is empty.
fun map f l =
let
fun g
foldr g
end

In Questions 3 and 4, assume the following function foldr:

the function with this result and the second item, and so on. That is, foldl f e $[x_1, x_2,, x_n]$ computes $f(x_n,, f(x_2, f(x_1, e)))$, or e if the list is empty.
<pre>fun foldl f e l = let</pre>
fun g
in foldr g

Question 4. [3 pts] Complete the following definition of the function foldl using foldr.

(Description) foldl f e l takes e and the first item of l and applies f to them, then feeds

(Type) foldl: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

Question 5. [3 pts] Consider the following definitions:

```
signature SET =
     sig
       type 'a set
       (* create l returns a set consisting of the elements of l *)
       val create : ''a list -> ''a set
     end
     structure SetOne :> SET =
     struct
       type 'a set = 'a list
     end
     structure SetTwo : SET =
     struct
       type 'a set = 'a list
    end
Give an implementation of the function union for the structure SetOne. If impossible, state
"impossible." You may use the operator @.
(Type) union: ''a list -> ''a SetOne.set -> ''a SetOne.set
(Description) union l s takes a list l and a set s, and returns a set consisting of the elements
     of l and s.
 (Example) union [x_1, x_2] (SetOne.create [y_1, y_2]) returns a set consisting of x_1, x_2, y_1,
     and y_2.
fun union 1 s =
```

Question 6. [3 pts] Give an implementation of the function union for the structure SetTwo. If it is impossible to implement union, then state "impossible." You may use the operator @.
(Type) union: ''a list -> ''a SetTwo.set -> ''a SetTwo.set
(Description) union l s takes a list l and a set s , and returns a set consisting of the elements of l and s .
(Example) union $[x_1, x_2]$ (SetTwo.create $[y_1, y_2]$) returns a set consisting of x_1, x_2, y_1 , and y_2 .
form and an I am
fun union l s =

2 α -equivalence relation [7 pts]

Recall the definition of the α -equivalence relation for the untyped λ -calculus:

expression
$$e ::= x \mid \lambda x. e \mid e \ e$$

$$\frac{1}{x \equiv_{\alpha} x} Var_{\alpha} \frac{e_{1} \equiv_{\alpha} e'_{1} \quad e_{2} \equiv_{\alpha} e'_{2}}{e_{1} e_{2} \equiv_{\alpha} e'_{1} e'_{2}} App_{\alpha}$$

$$\frac{e \equiv_{\alpha} e'}{\lambda x. e \equiv_{\alpha} \lambda x. e'} Lam_{\alpha} \frac{x \neq y \quad y \notin FV(e) \quad [x \leftrightarrow y]e \equiv_{\alpha} e'}{\lambda x. e \equiv_{\alpha} \lambda y. e'} Lam'_{\alpha}$$

Here we write $e \equiv_{\alpha} e'$ to mean that expressions e and e' are α -equivalent.

The goal of this problem is to implement the α -equivalence relation as an SML function. Suppose that we have the following definitions of types and functions:

• Type definitions:

- fv: var -> exp -> bool
 fv x e returns true if and only if variable x is a free variable of expression e.
- swap : var -> var -> exp -> exp swap x y e returns $[x \leftrightarrow y]e$.

Use these definitions and define the function aequi:

• aequi: exp -> exp -> bool aequi e_1 e_2 returns true if and only if $e_1 \equiv_{\alpha} e_2$ holds.

fu	ın	ae	equ	ıi	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			_
	_	_	_	_	_	_	_	_	_	_	_						_	_	_	_	_	_	_	_	_	
	_	_	_		_	_	_	_	_								_		_	_	_	_	_			
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
	_	_	_		_	_	_	_	_								_		_	_	_	_	_			_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_	_	_		_	_	_	_	_	_	_						_		_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_			_
	_	_	_		_	_	_	_	_	_	_			_	_			_	_	_	_	_	_	_	_	
	_																									
_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	
	_	_	_	_	_	_	_	_	_	_							_		_	_	_	_	_	_		_

3 Inductive definitions [12 pts]

The goal in this problem is to prove the correctness of the following function f which invokes a tail recursive function fact to calculate the factorial of a given integer:

$$\frac{\text{fun}}{\mid} \text{ fact } 0 \text{ a = a}$$

$$\mid \text{ fact n a = fact (n - 1) (n * a)}$$

$$\text{fun f n = fact n 1}$$

To prove the correctness of f, we rewrite the definition of fact into the following judgment fact $n\ a\ s$ and two inference rules:

$$\frac{\text{fact } n \ a \ s}{\text{fact } 0 \ a \ a} \ \frac{\text{fact } (n-1) \ (n \times a) \ s \quad n > 0}{\text{fact } n \ a \ s} \ Frec$$

Prove Theorem 3.1 shown below. We assume $n \ge 0$ and 0! = 1.

Theorem 3.1. If fact $n \mid s$, then s = n!.

You may introduce a lemma in your proof. If you choose to introduce a lemma, state the lemma and prove it separately.

4 λ -Calculus [21 pts]

In this problem, we study the properties of the untyped λ -calculus:

The reduction judgment is as follows:

 $e \mapsto e' \quad \Leftrightarrow \quad e \text{ reduces to } e'$

Question 1. [4 pts] Show the reduction sequence of a given expression under the call-by-value strategy and call-by-name strategy. In each step, underline the redex. Do *not* rename bound variables.

call-by-value:

$$(\lambda t. \lambda f. f) ((\lambda y. y) (\lambda z. z)) ((\lambda y'. y') (\lambda z'. z'))$$

→ ______

call-by-name:

$$(\lambda t. \lambda f. f) ((\lambda y. y) (\lambda z. z)) ((\lambda y'. y') (\lambda z'. z'))$$

→ _____

→

by-value strategy. Question 3. [5 pts] Complete the inductive definition of substitution. You may use $[x \leftrightarrow y]e$ for the expression obtained by replacing all occurrences of x in e by y and all occurrences of yin e by x. [e/x]x = e[e/x]y = _____ if $x \neq y$ $[e/x](e_1 \ e_2) \quad = \quad \underline{\hspace{1cm}}$ $[e'/x]\lambda x. e =$ $[e'/x]\lambda y. e =$ if $x \neq y, y \notin FV(e')$ $[e'/x]\lambda y. e =$ if $x \neq y, y \in FV(e')$

Question 2. [2 pts] Give an expression whose reduction does not terminate under the call-

where

In Questions 4, 5 and 6, you may use the following pre-defined constructs: zero, one, succ, if/then/else, pair, fst, snd, pred, eq, and fix. You do not need to copy definitions of these constructs.

• zero and one encode the natural numbers zero and one, respectively.

zero =
$$\hat{0} = \lambda f. \lambda x. x$$

one = $\hat{1} = \lambda f. \lambda x. f x$

• succ finds the successor of a given natural number.

succ =
$$\lambda \hat{n} \cdot \lambda f \cdot \lambda x \cdot \hat{n} f (f x)$$

• if e then e_1 else e_2 is a conditional construct.

if
$$e$$
 then e_1 else $e_2 = e e_1 e_2$

• pair creates a pair of expressions, and fst and snd are projection operators.

$$\begin{array}{lll} \mathsf{pair} &=& \lambda x.\,\lambda y.\,\lambda b.\,b\,\,x\,\,y\\ \mathsf{fst} &=& \lambda p.\,p\,\left(\lambda t.\,\lambda f.\,t\right)\\ \mathsf{snd} &=& \lambda p.\,p\,\left(\lambda t.\,\lambda f.\,f\right) \end{array}$$

• pred computes the predecessor of a given natural number where the predecessor of 0 is 0.

pred =
$$\lambda \widehat{n}$$
. fst $(\widehat{n} \text{ next (pair zero zero)})$

• eq tests two natural numbers for equality.

eq =
$$\lambda x. \lambda y.$$
 and (isZero (x pred y)) (isZero (y pred x))

• fix is the fixed point combinator.

fix =
$$\lambda F.(\lambda f. F \lambda x. (f f x)) (\lambda f. F \lambda x. (f f x))$$

Question 4. [2 pts] Define the function sum such that sum \hat{n} evaluates to the sum of natural numbers from $\hat{0}$ to \hat{n} . You may use the fixed point combinator.

	f s] Define the furction add. Define				to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j		o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.
not use the j	function add. De	o not copy the	definition of	add.	to $\widehat{m*n}$.

Following is the definition of de Bruijn expressions:

Question 7. [4 pts] Complete the definition of $\tau_i^n(N)$, as given in the course notes, for shifting by n (i.e., incrementing by n) all de Bruijn indexes in N corresponding to free variables, where a de Bruijn index m in N such that m < i does not count as a free variable.

$$\tau_i^n(N_1 N_2) = \underline{\hspace{1cm}}$$

$$\tau_i^n(\lambda.N) =$$

$$\tau_i^n(m) = \underline{\qquad} \text{if } m \geq i$$

$$\tau_i^n(m) = \underline{\hspace{1cm}} \text{if } m < i$$

5 Simply typed λ -calculus [28 pts]

In this problem, we study the properties of the simply typed λ -calculus.

The reduction judgment and typing judgment are of the following forms:

$$e \mapsto e' \qquad \Leftrightarrow \qquad e \text{ reduces to } e'$$

 $\Gamma \vdash e : A \qquad \Leftrightarrow \qquad \text{expression } e \text{ has type } A \text{ under typing context } \Gamma$

The typing rules are as follows:

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}\;\mathsf{Var}\quad\frac{\Gamma,x:A\vdash e:B}{\Gamma\vdash \lambda x:A.\,e:A\to B}\to\mathsf{I}\quad\frac{\Gamma\vdash e:A\to B\quad\Gamma\vdash e':A}{\Gamma\vdash e\ e':B}\to\mathsf{E}$$

$$\frac{\Gamma\vdash e:\mathsf{bool}\quad\Gamma\vdash e_1:A\quad\Gamma\vdash e_2:A}{\Gamma\vdash \mathsf{true}:\mathsf{bool}}\;\mathsf{True}\quad\frac{\Gamma\vdash e:\mathsf{bool}\quad\Gamma\vdash e_1:A\quad\Gamma\vdash e_2:A}{\Gamma\vdash \mathsf{if}\ e\ \mathsf{then}\ e_1\;\mathsf{else}\ e_2:A}\;\mathsf{If}$$

Question 1. [2 pts] State the two theorems, progress and type preservation, constituting type safety:

Theorem 5.1. (Progress).

Theorem 5.2. (Preservation).

Question 2. [10 pts] Fill in the blank to complete the proof of the substitution lemma. Assume the definition of substitution [e/x]e' as given in the course notes.

Lemma 5.3 (Substitution). *If* $\Gamma \vdash e : A \text{ and } \Gamma, x : A \vdash e' : C, \text{ then } \Gamma \vdash [e/x]e' : C.$

Proof. By rule induction on the judgment $\Gamma, x: A \vdash e': C$. We consider only two cases shown below. In the first case, we assume (without loss of generality) that y is a fresh variable such that $y \notin FV(e)$ and $y \neq x$. If $y \in FV(e)$ or y = x, we can always choose a different variable by applying an α -conversion to $\lambda y: C_1. e''$.

Case	$\frac{\Gamma, x : A, y : C_1 \vdash e'' : C_2}{\Gamma, x : A \vdash \lambda y : C_1 . e'' : C_1 \to C_2}$	\rightarrow I where $e' = \lambda$	$Ay: C_1. e'' \text{ and } C = C_1 \rightarrow C_2:$	
		_		
		-		
		-		
		-		

Case	$\frac{\Gamma, x : A \vdash e_1 : B \to C \Gamma, x : A}{\Gamma, x : A \vdash e_1 \ e_2 : C}$	$rac{\vdash e_2 : B}{\longrightarrow} \rightarrow E$	where $e' = e_1 e_2$:	
		_		
		_		
		_		_

types:	
	$A ::= \cdots \mid A \times A$
expression	$e ::= \cdots \mid (e,e) \mid fst\ e \mid snd\ e$
Complete the typing rules.	
<u> </u>	$\Gamma \vdash (e_1, e_2)$:
	$\Gamma \vdash fst\ e$:
	$\Gamma \vdash cnd \circ \cdot$
	$\Gamma \vdash snd\ e$:

Question 3. [2 pts] Consider the extension of the simply-typed λ -calculus with product

property is maintained. (You should modify only one typing rule.) Under the revised ty system, give an example of a closed well-typed expression which does not reduce to anot expression. Show the typing derivation of your expression under the revised type system.	
modified rule:	
expression:	
typing derivation:	
· 	_

Question 4. [6 pts] Assume the call-by-value strategy as given in the course notes. Modify one of the typing rules so that the progress property is destroyed while the type preservation

Question 5. [2 pts] Consider the extension of the simply-typed λ -calculus with sum types:

Write the reduction rules for these constructs under the call-by-value strategy. You should extend the definition of values and give reduction rules that maintain type safety.

value v ::	= ···		_
		\mapsto	
		\mapsto	
		\mapsto	
		\mapsto	

Question 6. [2 pts] Consider the extension of the simply-typed λ -calculus with fixed point constructs:

expression
$$e ::= \cdots \mid \text{fix } x : A. e$$

Write the typing rule for fix x:A. e and its reduction rule.

$$\Gamma \vdash \mathsf{fix} \; x \colon A.\, e :$$

Question 7. [4 pts] Consider the following SML program:

```
fun even 0 = true
    | even 1 = false
    | even n = odd (n - 1)

and odd 0 = false
    | odd 1 = true
    | odd n = even (n - 1)
```

The function even calls the function odd, and the function odd calls the function even. We refer to these functions as mutually recursive functions.

Write an expression of type (int \rightarrow bool) \times (int \rightarrow bool) that encodes both even and odd in the simply-typed λ -calculus:

We assume that the infix operations - and = are given as primitive, which correspond to the integer substitution and equality test, respectively.

6 Evaluation contexts and environments [14 pts]

Consider the following fragment of the simply-typed λ -calculus:

$$\begin{array}{lll} \text{type} & A & ::= & P \mid A \rightarrow A \\ \text{base type} & P & ::= & \text{bool} \\ \text{expression} & e & ::= & x \mid \lambda x \colon A.\ e \mid e\ e \mid \text{true} \mid \text{false} \mid \text{if}\ e \ \text{then}\ e \ \text{else}\ e \end{array}$$

Question 1. [2 pts] Give the definition of evaluation contexts for the call-by-value strategy.

evaluation context $\kappa ::=$ _____

Question 2. [2 pts] Give the definition of evaluation contexts for the call-by-name strategy.

evaluation context $\kappa ::=$

Question 3. [6 pts] Consider the following definition of the abstract machine C under the call-by-name strategy:

frame $\phi \ ::= \ _$ $stack \qquad \sigma \ ::= \ \square \mid \sigma; \phi$ $state \qquad s \ ::= \ \sigma \blacktriangleright e \mid \sigma \blacktriangleleft v$

Complete the definition of frame ϕ and the reduction rules for the abstract machine C. We use the following reduction judgment:

 $s \mapsto_{\mathcal{C}} s' \quad \Leftrightarrow \quad \text{The state } s \text{ reduces to the state } s'$

\mapsto C	
\mapsto C	
\mapsto C	
—————————————————————————————————————	
\mapsto C	
\mapsto C	

Question 4. [4]	$4 \mathrm{~pts}]$	The key i	idea behir	nd the	environment	semantics is	s to postpo	one a substi-
tution $[v/x]e$ by	y storing	g a pair o	f v and x	in an	environment.	We use the	following	definition of
environment:								

environment
$$\eta ::= \cdot \mid \eta, x \hookrightarrow v$$

· denotes an empty environment, and $x \hookrightarrow v$ means that variable x is to be replaced by value v. We use an *environment evaluation judgment* of the form $\eta \vdash e \hookrightarrow v$:

$$\eta \vdash e \hookrightarrow v \quad \Leftrightarrow \quad e \ evaluates \ to \ v \ under \ environment \ \eta$$

Complete the definition of values. Then give rules for the environment evaluation judgment for variables, λ -abstractions, and applications under the <u>call-by-value</u> strategy. Your definition of values should include closures covered in class.

value
$$v ::=$$

$$\eta \vdash x \hookrightarrow$$

$$\eta \vdash \lambda x : A. e \hookrightarrow$$

$$\eta \vdash e1\ e2 \hookrightarrow$$