CSE-490 Assignment 3 - Normalization (100 points)

gla@postech

Due at 1:00am, October 16 (Monday)

In this assignment, you will prove the normalization property of the natural deduction system with the implication connective \supset only. To help the instructor grade this assignment, you are required to typeset your answers using LATEX.

- For this assignment, you may work with up to one other student.
- For this assignment, you are free to consult outside material (other than Course Notes).
- On the cover page of your assignment, you must state one of the following:
 - I worked alone on this assignment.
 - I worked with (your classmate with whom you discussed this assignment) on this assignment.
- On the cover page of your assignment, you must state one of the following:
 - I used only the course material provided on the course webpage.
 - I used the following outside material to complete this assignment: (sources of outside material).

1 Preliminaries

Lexicographical ordering

A lexicographical ordering \succ on pairs (m, n) of natural numbers is defined as follows, where $m \ge 0$ and $n \ge 0$ are assumed:

 $(m,n) \succ (m',n')$ iff. either (1) m > m', or (2) m = m' and n > n'.

 \succ is an example of a *well-founded ordering* in that there is no infinite descending chain

 $(m_0, n_0) \succ (m_1, n_1) \succ \cdots \succ (m_i, n_i) \succ \cdots$

Size of a proposition

We define the size size(A) of a proposition A as follows, where P denotes an atomic proposition:

size
$$(P)$$
 = 1
size $(A \supset B)$ = max(size (A) , size (B)) + 1

Degree of a detour

Consider a detour in which an introduction rule is used to deduce A true to which a corresponding elimination rule is applied. The degree of the detour is defined as size(A).

Degree of a proof

We define the degree of a proof \mathcal{D} as the maximum of the degrees of all the detours in \mathcal{D} . If \mathcal{D} contains no detours, we let its degree be zero.

Size of a proof

We define the size $size(\mathcal{D})$ of a proof \mathcal{D} as a pair (d, n) where d is the degree of \mathcal{D} and n is the number of detours of degree d in \mathcal{D} . If \mathcal{D} contains no detours, we let $size(\mathcal{D})$ be (0,0). Note that if $size(\mathcal{D}) = (d,n)$ and d > 0, then n > 0.

2 Normalization

We consider the following fragment of propositional logic:

with detours into another proof so that its size decreases.

$$\begin{array}{c} \overline{A \ true}^{x} \\ \vdots \\ \overline{B \ true} \\ \overline{A \supset B \ true} \\ \hline \\ \overline{A \supset B \ true} \\ \end{array} \begin{array}{c} A \supseteq B \ true \\ \overline{B \ true} \\ \hline \\ \\ \Box \\ \end{array} \right) \mathsf{E}$$

Implicit in the rule $\supset l^x$ is that the hypothetical proof in the premise may contain multiple occurrences of the hypothesis $\overline{A \ true}^x$, since we may use the same hypothesis zero times, just once, or as many times as necessary.

Lemma 2.1. For a proof \mathcal{D} of A true with some detours (i.e., a proof \mathcal{D} of A true that is not normal), there exists another proof \mathcal{D}' of A true such that $size(\mathcal{D}) \succ size(\mathcal{D}')$.

Proof. Fill in the proof. You should give a formal proof using induction. (80 points) \Box You want to check that your proof of Lemma 2.1 actually gives an *algorithm* for transforming a proof

Theorem 2.2. For every proof of A true, there is a finite sequence of local reductions that lead to a normal proof of A true.

Proof. Fill in the proof. Use the property of well-founded orderings. (20 points)

Submission instruction

Download hw3.tex, defns.tex, proof.sty from the course webpage and copy them to your working directory.

Fill in hw3.tex with your answers.

Produce a PostScript file hw3.ps. Copy both hw3.ps and hw3.tex to the following directory (if your Hemos id is foo):

/afs/postech.ac.kr/class/cse/cs490/handin/hw3/foo/

Note that we do not accept PDF files! A sample session might look like:

[gla:23] latex hw3.tex

[gla:24] dvips -o hw3.ps hw3.dvi

[gla:25] cp hw3.ps /afs/postech.ac.kr/class/cse/cs490/handin/hw3/<Your Hemos ID>/

[gla:26] cp hw3.tex /afs/postech.ac.kr/class/cse/cs490/handin/hw3/<Your Hemos ID>/