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Preface

This is a collection of course notes for CSE-490 Logic in Computer Science at POSTECH. The material is
largely based on course notes for 15-399 Constructive Logic and 15-815 Automated Theorem Proving, both
by Frank Pfenning at Carnegie Mellon University.

Any comments and suggestions will be greatly appreciated. I especially welcome feedback from
students as to which part is difficult to follow and which part needs to be improved. The less back-
ground you have in logic and proof theory, the more useful your comments will be. So please do not
hesitate if you are taking this course!

iii



iv

September 3, 2009



Contents

Inductive Definitions

1.1 Inductive definitions of syntactic categories . . . . .. ... ... ... .. 0L
1.2 Inductive definitions of judgments . . . . . ... ... ... o o L L oL
1.3 Derivable rules and admissiblerules . . . . . ... ... ... ... . . o o L
14 Inductive proofs . . . . . . . . ..
141 Structuralinduction . ... ... ... ... .. L o o
142 Ruleinduction . .. ... ... .. .. ...
1.5 Techniques for inductiveproofs . . . . . .. .. ... ... ... .. . oo
151 Usingalemma . ... ... ... ... .. ...
152 Generalizingatheorem . ... ... ... .. ... ... ... ... ... ... ... .
1.5.3 Proof by the principle of inversion . . . . ... ..... ... ... ... ... ...,
1.6 Exercises . . . . . . . ..

Propositional Logic

21 Propositionsandjudgments . . . . . ... ... L Lo L L
2.2 Natural deduction system for propositional logic . . . . . ... .. .. ... .. ... ....
23 Logicalequivalence . . . . . .. .. ... ...
2.4 Hypotheticaljudgments . . . .. ... .. ... ... ... L
2.5 Local soundness and completeness . . . . . ... ... ... ... oo oL
2.6 Normalproofs . . . . .. . . . . .
2.7 Normalization . . . . . .. . ... ..
28 Longnormalproofs . . . ... ... ... ... ... ...

Proof Terms

31 Proofterms. . . . .. ... ... e
32 Typesystem . . .. ... ..
3.3 [-reductionsand n-expansions . . . . ... ... L Lo
3.4 Proof termsinnormal form . ... ... ... ... L L L
3.5 Prooftermsinlongnormalform . ... ... . ... ... ... .. 0 L

Sequent Calculus

4.1 Sequent calculus for propositionallogic . . .. ... ... .. ... .. o o 0L
42 Cutelimination . . ... .. ... .. ..
4.3 Normalization for the natural deductionsystem . . . ... ... . ... ... ........
First-Order Logic

5.1 Terms . . . . .
5.2 Propositions in first-order logic . . . . . .. ... ... L L L oo
53 Universal quantification . . . ... ... ... ... ... .. L o
5.4 Existential quantification . . . . .. .. ... L L L o o
5.5 Local soundness and completeness . . . . . . ... .. ... .. o L oL
56 Examples . . . . . ..
57 Proofterms. . . . .. .. ...
5.8 Examplesof proofterms . . . ... ... ... ... ... L L



6 Datatypes 75

vi

6.1 Basic constructors fordatatypes . . . . ... .. L L L L L 75
6.2 Natural deduction for datatypes . . ... ... ... ... ... ... L. 76
6.3 Primitiverecursion . . . . . ... ... L 78
6.4 First-order logic withdatatypes . . . . . ... ... .. ... ... ... .. 0L 81
6.5 Natural deduction for predicates . . . . ... ... ... .. .. L o o 83
6.6 Inductiononterms . . .. ... ... ... ... 85
6.7 Examples . . . . . .. 87
6.8 Inductiononpredicates . . ... .. ... .. ... L 90
6.9 Definitionalequality . . ... ... ... ... .. ... ... 91
Classical Logic 95
7.1 Ajudgmental formulation of classical logic . . . .. ... ....... ... ... ... ... 95
72 Proofterms. . . . . . .. ... e 96
7.3 Sequent calculus for classical logic . . . .. ... ... .. .. L o oo 97
74 Double-negation translation and CPS translation . . . . . . ... ... ... ... ...... 98

September 3, 2009



Chapter 1

Inductive Definitions

This chapter discusses inductive definitions which are an indispensable tool in the study of programming
languages. The reason why we need inductive definitions is not difficult to guess: a programming
language may be thought of a system that is inhabited by infinitely many elements (or programs), and
we wish to give a complete specification of it with a finite description; hence we need a mechanism of
inductive definition by which a finite description is capable of yielding an infinite number of elements
in the system. Those techniques related to inductive definitions also play a key role in investigating
properties of programming languages. We will study these concepts with a few simple languages.

1.1 Inductive definitions of syntactic categories

An integral part of the definition of a programming language is its syntax which answers the question

of which program (i.e., a sequence of characters) is recognizable by the parser and which program is

not. Typically the syntax is specified by a number of syntactic categories such as expressions, types, and

patterns. Below we discuss how to define syntactic categories inductively in a few simple languages.
Our first example defines a syntactic category nat of natural numbers:

nat n == 0|Sn

Here nat is the name of the syntactic category being defined, and n is called a non-terminal. We read
::= as “is defined as” and | as “or.” 0 stands for “zero” and S “successor.” Thus the above definition is
interpreted as:

A natural number n is either 0 or S n’ where n’ is another natural number.

Note that nat is defined inductively: a natural number S n’ uses another natural number n’, and thus
nat uses the same syntactic category in its definition. Now the definition of nat produces an infinite
collection of natural numbers such as

0,80,SS0,SSS0,SSSQ, ---.

Thus nat specifies a language of natural numbers.
A syntactic category may refer to another syntactic category in its definition. For example, given the
above definition of nat, the syntactic category tree below uses nat in its inductive definition:

tree t == leaf n|node (¢t n,t)
leaf n represents a leaf node with a natural number »; node (¢1, n, 2) represents an internal node with
a natural number n, a left child ¢, and a right child ¢;. Then tree specifies a language of regular binary

trees of natural numbers such as

leaf n, node (leaf n1,n,leaf ny), node (node (leaf ny,n,leaf ny),n’,leaft n”), --- .
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A similar but intrinsically different example is two syntactic categories that are mutually inductively
defined. For example, we simultaneously define two syntactic categories even and odd of even and odd
numbers as follows:

even e == 0]So
odd o u= Se

According to the definition above, even consists of even numbers such as
0,SsS0,SSSssSQO, ---
whereas odd consists of odd numbers such as
S0,SSS0,SSSSSO, ---.

Note that even and odd are subcategories of nat because every even number e or odd number o is also a
natural number. Thus we may think of even and odd as nat satisfying certain properties.

Exercise 1.1. Define even and odd independently of each other.

Let us consider another example of defining a syntactic subcategory. First we define a syntactic
category paren of strings of parentheses:

paren s = €|(s])s

e stands for the empty string (i.e., s = s = se). paren specifies a language of strings of parentheses with
no constraint on the use of parentheses. Now we define a subcategory mparen of paren for those strings
of matched parentheses:

mparen s == €|(s)]ss

mparen generates such strings as

¢, 0-00,0), (0,000,

mparen is ambiguous in the sense that a string belonging to mparen may not be decomposed in a
unique way (according to the definition of mparen). For example, ()()() may be thought of as either ()()
concatenated with () or () concatenated with ()(). The culprit is the third case s s in the definition: for
a sequence of substrings of matched parentheses, there can be more than one way to split it into two
substrings of matched parentheses. An alternative definition of Iparen below eliminates ambiguity in
mparen:

Iparen s u= €l|(9)s

The idea behind Iparen is that the first parenthesis in a non-empty string s is a left parenthesis “(” which
is paired with a unique occurrence of a right parenthesis “ )”. For example, s = (())() can be written
as (s1)s2 where s1 = () and sy = (), both strings of matched parentheses, are uniquely determined by
s. ()) and (()(), however, are not strings of matched parentheses and cannot be written as (s1)ss where
both s; and s; are strings of matched parentheses.

An inductive definition of a syntactic category is a convenient way to specify a language. Even the
syntax of a full-scale programming language (such as SML) uses essentially the same machinery. It is,
however, not the best choice for investigating properties of languages. For example, how can we formally
express that n belongs to nat if S n belongs to nat, let alone prove it? Or how can we show that a string
belonging to mparen indeed consists of matched parentheses? The notion of judgment comes into play
to address such issues arising in inductive definitions.

1.2 Inductive definitions of judgments

A judgment is an object of knowledge, or simply a statement, that may or may not be provable. Here
are a few examples:

e “1 —1isequal to 0”is a judgment which is always provable.
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e “1+4 1isequal to0” is also a judgment which is never provable.
e "It is raining” is a judgment which is sometimes provable and sometimes not.

e “S S0 belongs to the syntactic category nat” is a judgment which is provable if nat is defined as
shown in the previous section.

Then how do we prove a judgment? For example, on what basis do we assert that “1 — 1 is equal to
0” is always provable? We implicitly use arithmetic to prove “1 — 1 is equal to 0”, but strictly speaking,
arithmetic rules are not given for free — we first have to reformulate them as inference rules.
An inference rule consists of premises and a conclusion, and is written in the following form (where
J stands for a judgment):
Ji Jy e Jy
J
The inference rule, whose name is R, states that if J; through J,, (premises) hold, then .J (conclusion)

also holds. As a special case, an inference rule with no premise (i.e., n = 0) is called an axiom. Here are
a few examples of inference rules and axioms where we omit their names:

R

m is equal tol 1 is equal ton m is equal to n
m is equal to n m+ lisequal ton + 1
My coat is wet
n is equal to n 0 is a natural number It is raining

Judgments are a general concept that covers any form of knowledge: knowledge about weather,
knowledge about numbers, knowledge about programming languages, and so on. Note that judg-
ments alone are inadequate to justify the knowledge being conveyed — we also need inference rules
for proving or refuting judgments. In other words, the definition of a judgment is complete only when
there are inference rules for proving or refuting it. Without inference rules, there can be no meaning in the
judgment. For example, without arithmetic rules, the statement “1 — 1 is equal to 0” is nothing more than
nonsense and thus cannot be called a judgment.

Needless to say, judgments are a concept strong enough to express membership in a syntactic cate-
gory. As an example, let us recast the inductive definition of nat as a system of judgments and inference
rules. We first introduce a judgment n nat:

n nat & nis a natural number

We use the following two inference rules to prove the judgment n nat where their names, Zero and Succ,
are displayed:

nat
S n nat

Zero Suce

0 nat

n in the rule Succ is called a metavariable which is just a placeholder for another sequence of 0 and
S and is thus not part of the language consisting of 0 and S. That is, n is just a (meta)variable which
ranges over the set of sequences of 0 and S; n itself (before being replaced by S 0, for example) is not
tested for membership in nat.

The notion of metavariable is similar to the notion of variable in SML. Consider an SML expression
X = 1 where X is a variable of type int . The expression makes sense only because we read x as a
variable that ranges over integer values and is later to be replaced by an actual integer constant. If
we literally read X as an (ill-formed) integer, X = 1 would always evaluate to false because X, as an
integer constant, is by no means equal to another integer constant 1.

The judgment n nat is now defined inductively by the two inference rules. The rule Zero is a base
case because it is an axiom, and the rule Succ is an inductive case because the premise contains a judg-
ment smaller in size than the one (of the same kind) in the conclusion. Now we can prove, for example,
that S S 0 nat holds with the following derivation tree, in which S S 0 nat is the root and 0 nat is the only

leaf (i.e., it is an inverted tree):

Onat Zero

S 0 nat Sgcc
S S0 nat QU

Similarly we can rewrite the definition of the syntactic category tree in terms of judgments and inference
rules:
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t tree & tisaregular binary tree of natural numbers

t1 tree mnat iy tree
N nat Leaf

ode

leaf n tree node (t1,n,ts) tree

A slightly more complicated example is a judgment that isolates full regular binary trees of natural
numbers, as shown below. Note that there is no restriction on the form of judgment as long as its
meaning is clarified by inference rules. We may even use English sentences as a valid form of judgment!

t ctree(d) & tisafull reqular binary tree of natural numbers of depth d
n nat t; ctree(d) mnat ty ctree(d)
————— (leaf node
leaf n ctree(0) node (t1,n,ts) ctree(S d)
The following derivation tree proves that
0
0 0
0 0 0 O
is a full regular binary tree of depth S S 0:
~—— Zero = Zero
0 nat 0 nat
————————— Cleaf —— ———————— Cleq
leaf O ctree(0) / Onat 2¢7° leaf 0 ctree(0) p z;
node (leaf 0,0, leaf 0) ctree(S 0) M09 Bhat  (omitted)

node
node (node (leaf 0,0, leaf 0),0,node (leaf 0,0, leaf 0)) ctree(S S 0)

We can also show that ¢t = node (leaf 0,0,node (leaf 0,0, leaf 0)) is not a full regular binary tree as
we cannot prove ¢ ctree(d) for any natural number d:

Cnode
Cnode

Onat d'=0 Cleaf p - d'=8d"
leaf O ctree(d') 0nat ““’ node (leaf 0,0,1eaf 0) ctree(d’)
node (leaf 0,0,node (leaf 0,0, leaf 0)) ctree(S d’)

It is easy to see why the proof fails: the left subtree of ¢ requires d’ = 0 while the right subtree of ¢
requires d’ = S d”’, and there is no way to solve two conflicting equations on d’.

As with the syntactic categories even and odd, multiple judgments can be defined simultaneously.
For example, here is the translation of the definition of even and odd into judgments and inference rules:

n even & nis an even number
n odd & nis an odd number
n odd n even
— SuccO
0 even ZeroE S n even SuccE S n odd

The following derivation tree proves that S S 0 is an even number:

ZeroE
SuccO
SuccE

0 even
S 0 odd
S S 0even

Exercise 1.2. Translate the definition of paren, mparen, and Iparen into judgments and inference rules.
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1.3 Derivable rules and admissible rules

As shown in the previous section, judgments are defined with a certain (fixed) number of inference
rules. When put together, these inference rules justify new inference rules which may in turn be added
to the system. The new inference rules do not change the characteristics of the system because they can
all be justified by the original inference rules, but may considerably facilitate the study of the system.
For example, when multiplying two integers, we seldom employ the basic arithmetic rules, which can
be thought of as original inference rules; instead we mostly use the rules of the multiplication table,
which can be thought of as new inference rules.

There are two ways to introduce new inference rules: as derivable rules and as admissible rules. A
derivable rule is one in which the gap between the premise and the conclusion can be bridged by a
derivation tree. In other words, there always exists a sequence of inference rules that use the premise
to prove the conclusion. As an example, consider the following inference rule which states that if n is a

natural number, sois S S n:
n nat

S Snnat Succ?

The rule Succ? is derivable because we can justify it with the following derivation tree:

n nat s
S n nat gcc
S Sn nat QU

Now we may use the rule Succ? as if it was an original inference rule; when asked to justify its use, we
can just present the above derivation tree.

An admissible rule is one in which the premise implies the conclusion. That is, whenever the
premise holds, so does the conclusion. A derivable rule is certainly an admissible rule because of the
derivability of the conclusion from the premise. There are, however, admissible rules that are not deriv-
able rules. (Otherwise why would we distinguish between derivable and admissible rules?) Consider
the following inference rule which states that if S n is a natural number, so is n:

S n nat
n nat

Suce™?!
First observe that the rule Succ™! is not derivable: the only way to derive n nat from S n nat is by the
rule Succ, but the premise of the rule Succ is smaller than its conclusion whereas S n nat is larger than
n nat. That is, there is no derivation tree like

S n nat
= Succ™?!

— —1
nnat Suce

Now suppose that the premise S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat as follows:

Then we can extract a smaller derivation tree  :  which proves n nat. Hence the rule Succ™? is
n nat

justified as an admissible rule.

An important property of derivable rules is that they remain valid even when the system is aug-
mented with new inference rules. For example, the rule Succ2 remains valid no matter how many
new inference rules are added to the system because the derivation of S S n nat from n nat is always
possible thanks to the rule Succ (which is not removed from the system). In contrast, admissible rules
may become invalid when new inference rules are introduced. For example, suppose that the system
introduces a new (bizarre) inference rule:

n tree

~— —— Bizarre
S n nat
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The rule Bizarre invalidates the previously admissible rule Succ™! because the rule Succ is no longer
the only way to prove S n nat and thus S n nat fails to guarantees n nat. Therefore the validity of an
admissible rule must be checked each time a new inference rule is introduced.

n even
Exercise 1.3. Istherule 5§, even SuccE?  derivable or admissible? What about the rule % SuccE~2 ?

1.4 Inductive proofs

We have learned how to specify systems using inductive definitions of syntactic categories or judg-
ments, or inductive systems of syntactic categories or judgments. While it is powerful enough to specify
even full-scale programming languages (i.e., their syntax and semantics), the mechanism of inductive
definition alone is hardly useful unless the resultant system is shown to exhibit desired properties. That
is, we cannot just specify a system using an inductive definition and then immediately use it without
proving any interesting properties. For example, our intuition says that every string in the syntactic
category mparen has the same number of left and right parentheses, but the definition of mparen itself
does not automatically prove this property; hence we need to formally prove this property ourselves in
order to use mparen as a language of strings of matched parentheses. As another example, consider the
inductive definition of the judgments n even and n odd. The definition seems to make sense, but it still
remains to formally prove that n in n even indeed represents an even number and n in n odd an odd
number.

There is another important reason why we need to be able to prove properties of inductive systems.
An inductive system is often so complex that its soundness, i.e. its definition being devoid of any
inconsistencies, may not be obvious at all. In such a case, we usually set out to prove a property that
is supposed to hold in the system. Then each flaw in the definition that destroys the property, if any,
manifests itself at some point in the proof (because it is impossible to complete the proof). For example,
an expression in a functional language is supposed to evaluate to a value of the same type, but this
property (called type preservation) is usually not obvious at all. By attempting to prove type preservation,
we can either locate flaws in the definition or partially ensure that the system is sound. Thus proving
properties of an inductive system is the most effective aid in fixing errors in the definition.

First we will study a principle called structural induction for proving properties of inductive systems
of syntactic categories. Next we will study another principle called rule induction for proving properties
of inductive systems of judgments. Since an inductive system of syntactic category is a simplified
presentation of a corresponding inductive system of judgments, structural induction is in fact a special
case of rule induction. Nevertheless structural induction deserves separate treatment because of the
role of syntactic categories in the study of programming languages.

1.4.1 Structural induction

The principle of structural induction states that a property of a syntactic category may be proven induc-
tively by analyzing the structure of its definition: for each base case, we show that the property holds
without making any assumption; for each inductive case, we first assume that the property holds for
each smaller element in it and then prove the property holds for the entire case.

A couple of examples will clarify the concept. Consider the syntactic category nat of natural num-
bers. We wish to prove that P(n) holds for every natural number n. Examples of P(n) are:

e n has a successor.
e nis 0 or has a predecessor n’ (i.e., Sn' = n).

e n is a product of prime numbers (where definitions of products and prime numbers are assumed
to be given).

By structural induction, we prove the following two statements:
e P(0) holds.
e If P(n) holds, then P(S n) also holds.
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The first statement is concerned with the base case in which 0 has no smaller element in it; hence we
prove P(0) without any assumption. The second statement is concerned with the inductive case in
which S n has a smaller element n in it; hence we first assume, as an induction hypothesis, that P(n)
holds and then prove that P(S n) holds. The above instance of structural induction is essentially the
same as the principle of mathematical induction.

As another example, consider the syntactic category tree of regular binary trees. In order to prove
that P(¢) holds for every regular binary tree ¢, we need to prove the following two statements:

e P(leaf n) holds.
e If P(t1) and P(t2) hold as induction hypotheses, then P(node (¢1, n,t2)) also holds.

The above instance of structural induction is usually called tree induction.

As a concrete example of an inductive proof by structural induction, let us prove that every string
belonging to the syntactic category mparen has the same number of left and right parentheses. (Note
that we are not proving that mparen specifies a language of strings of matched parentheses.) We first
define two auxiliary functions left and right to count the number of left and right parentheses. For
visual clarity, we write left[s] and right[s] instead of left(s) and right(s). (We do not define left and right
on the syntactic category paren because the purpose of this example is to illustrate structural induction
rather than to prove an interesting property of mparen.)

lefte] = 0
left[(s)] = 1+ left[s]
left[s1 sa] = left[s1] + left[so]
rightle] = 0
m’ght[(s)} = 1+ right[s]

right[s1 s2] = right[s1] + right[sa]
Now let us interpret P(s) as “left[s] = right[s].” Then we want to prove that if s belongs to mparen,
written as s € mparen, then P(s) holds.

Theorem 1.4. If s € mparen, then left[s] = right|s].

Proof. By structural induction on s.
Each line below corresponds to a single step in the proof. It is written in the following format:

conclusion justification

This format makes it easy to read the proof because in most cases, we want to see the conclusion first
rather than its justification.

Case s = e
leftle] = 0 = rightle]

Case s = (¢'):
left[s'] = right[s'] by induction hypothesis on s’
left[s] = 1 + left[s'] = 1 + right[s'] = right[s] from left[s'] = right[s']

Case s = s7 s9:
left[s1] = right[s1] by induction hypothesis on s;
left[sa] = right[ss] by induction hypothesis on s,
leftlsy 5] = left[s1] + leftlss) = right([s1] + rightlss] = right[sy 5]

from left[s1] = right[s1] and left[sa] = right[ss]

O

In the proof above, we may also say “by induction on the structure of s” instead of “by structural
induction on s.”
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1.4.2 Rule induction

The principle of rule induction is similar to the principle of structural induction except that it is applied
to derivation trees rather than definitions of syntactic categories. Consider an inductive definition of a
judgment J with two inference rules:

Jl J2 Jn

= Rbpase T

Jp

Rind

We want to show that whenever J holds, another judgment P(J) holds where P(J) is a new form of
judgment parameterized over J. For example, when J is “n nat”, P(J) may be “either n even or n odd.”
To this end, we prove the following two statements:

e P(Jp) holds.
o If P(Jy), P(J2),---,and P(J,) hold as induction hypotheses, then P(.J;) holds.

By virtue of the first statement, the following inference rule makes sense because we can always prove
P (J b):

/

—— R,
P(Jb) base

The following inference rule also makes sense because of the second statement: it states that if P(.J;)
through P(J,,) hold, then P(.J;) also holds, which is precisely what the second statement proves:

P(J1) P(J2) -+ P(Jn) ,
P(JZ) ind

Now, for any derivation tree for J using the rules Ry, and Ring, we can prove P(J) using the rules
R{)ase and Ri/nd:

/

T ase — R
Jb Rb E P(Jb) base

A —  P(h)  P(h) P(J,)
7 Ring

/
Rind

In other words, J always implies P(.J). A generalization of the above strategy is the principle of rule
induction.

As a trivial example, let us prove that n nat implies either n even or n odd. We let P(n nat) be “either
n even or n odd” and apply the principle of rule induction. The two rules Zero and Succ require us to
prove the following two statements:

e P(0 nat) holds. That is, for the case where the rule Zero is used to prove n nat, we have n = 0 and
thus prove P(0 nat).

e If P(n’ nat) holds, P(S n’ nat) holds. That is, for the case where the rule Succ is used to prove
n nat, we have n = 8 n/ and thus prove P(S n’ nat) using the induction hypothesis P(n’ nat).

According to the definition of P(J), the two statements are equivalent to:

e Either 0 even or 0 odd holds.

o If either n’ even or n’ odd holds, then either S n/ even or S n’ odd holds.
A formal inductive proof proceeds as follows:

Theorem 1.5. If n nat, then either n even or n odd.
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Proof. By rule induction on the judgment n nat.

It is of utmost importance that we apply the principle of rule induction to the judgment n nat rather
than the natural number n. In other words, we analyze the structure of the proof of n nat, not the struc-
ture of n. If we analyze the structure of n, the proof degenerates to an example of structural induction!
Hence we may also say “by induction on the structure of the proof of n nat” instead of “by rule induc-
tion on the judgment n nat.”

Case Onat 2¢" (where n happens to be equal to 0):

(This is the case where n nat is proven by applying the rule Zero. It is not obtained as a case where n is
equal to O, since we are not analyzing the structure of n. Note also that we do not apply the induction
hypothesis because the premise has no judgment.)

0 even by the rule ZeroE
" nat ’

Case o 7 Succ  (where n happens to be equal to S n'):

(This is the case where n nat is proven by applying the rule Succ.)

n’ even or n’ odd by induction hypothesis

Sn' odd or S n' even by the rule SuccO or SuccE

O

Rule induction can also be applied simultaneously to two or more judgments. As an example, let us
prove that n in n even represents an even number and n in n» odd an odd number. We use the rules ZeroFE,
SuccE, and SuccO in Section 1.2 along with the following inference rules using a judgment n double n':

D n double n’ Dsuce
0 double 0 “#" s double S S 7/

Intuitively n double n’ means that »n’ is a double of n (i.e., n’ = 2 x n). The properties of even and odd
numbers are stated in the following theorem:

Theorem 1.6.
If n even, then there exists n' such that n' double n.
If n odd, then there exist n’ and n”’ such that n’ double n” and S n”" = n.

The proof of the theorem follows the same pattern of rule induction as in previous examples except
that P(J) distinguishes between the two cases J = n even and J = n odd:

e P(n even) is “there exists n’ such that n’ double n.”

e P(n odd) is “there exist n’ and n’ such that n’ double n” and S n” = n.

An inductive proof of the theorem proceeds as follows:

Proof of Theorem 1.6. By simultaneous rule induction on the judgments n even and n odd.

Case Q0 even ZeroE  yihere n = 0:
0 double 0 by the rule Dzero
We let n’ = 0.
C n, odd h P

ase W SuccE Wheren = Np:
n,, double n;y and S n; = n,, by induction hypothesis
S n;, double S S n;) by the rule Dsucc with n;, double n;)
S n;, double n fromSSny =Sn,=n
Weletn' =8Sn).

P
n, even SuecO

Case g 1, odd uccO wheren = S ny:
n,, double n,, by induction hypothesis
We let n’ = nj, and n" = n, fromn = Sn,

O
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1.5 Techniques for inductive proofs

An inductive proof is not always as straightforward as the proof of Theorem 1.5. For example, the
theorem being proven may be simply false! In such a case, the proof attempt (which will eventually
fail) may help us to extract a counterexample of the theorem. If the theorem is indeed provable (or is
believed to be provable) but a direct proof attempt fails, we can try a common technique for inductive
proofs. Below we illustrate three such techniques: introducing a lemma, generalizing the theorem, and
proving by the principle of inversion.

1.5.1 Using alemma

We recast the definition of the syntactic categories mparen and Iparen as a system of judgments and
inference rules:

smparen .. .- S1mparen sy mparen
———— Meps b Mseq
€ mparen (s) mparen 51 S mparen
s1 Iparen  so Iparen
—— Leps
¢ Iparen (s1) s Iparen

Our goal is to show that s mparen implies s Iparen. It turns out that a direct proof attempt by rule
induction fails and that we need a lemma. To informally explain why we need a lemma, consider
the case where the rule Mseq is used to prove s mparen. We may write s = s; s with s; mparen and
s9 mparen. By induction hypothesis on s; mparen and s; mparen, we may conclude s; Iparen and s Iparen.
From s; Iparen, there are two subcases to consider:

o If 51 =¢ then s = s1 s3 = s and s Iparen implies s Iparen.
o If 51 = () s with s Iparen and s/ Iparen, then s = (s) s7 sa.

In the second subcase, it is necessary to prove si sy Iparen from s/ Iparen and so Iparen, which is not
addressed by what is being proven (and is not obvious). Thus the following lemma needs to be proven
first:

Lemma 1.7. If s Iparen and s’ Iparen, then s s’ Iparen.

Then how do we prove the above lemma by rule induction? The lemma does not seem to be provable
by rule induction because it does not have the form “If J holds, then P(J) holds” — the If part contains
two judgments! It turns out, however, that rule induction can be applied exactly in the same way. The
trick is to interpret the statement in the lemma as:

If s Iparen, then s’ Iparen implies s s’ Iparen.

Then we apply rule induction to the judgment s Iparen with P(s Iparen) being “s’ Iparen implies s s’ Iparen.”
An inductive proof of the lemma proceeds as follows:

Proof of Lemma 1.7. By rule induction on the judgment s Iparen. Keep in mind that the induction hypoth-
esis on s Iparen yields “s’ Iparen implies s s’ Iparen.” Consequently, if s’ Iparen is already available as an
assumption, the induction hypothesis on s Iparen yields s s’ Iparen.

Case ¢ |paren Leps wwhere s = e:

s’ Iparen assumption
ss'=es' =4

s &' Iparen from s’ Iparen
Case lparen s lparen Lseq where s = (s1) sa:

(s1) s2 Iparen

s’ Iparen assumption
ss" =(s1) 828

“s' Iparen implies s s’ Iparen” by induction hypothesis on s, Iparen

10 September 3, 2009



s9 s’ Iparen from the assumption s’ Iparen
(s1) s2 s’ Iparen by the rule Lseq with s; Iparen and s; s’ Iparen
O]

Exercise 1.8. Can you prove Lemma 1.7 by rule induction on the judgment s’ Iparen?
Now we are ready to prove that s mparen implies s Iparen.

Theorem 1.9. If s mparen, then s Iparen.

Proof. By rule induction on the the judgment s mparen.

Case emparen MePS where s = e

e Iparen by the rule Leps
s' mparen
Case # Mpar where s = (s'):
(s') mparen
s’ Iparen by induction hypothesis
| “Toaren Leps
(s') Iparen from 5 'Paren € lparen Lseq and (s') = (s') €
(s) € Iparen
s1 mparen sy mparen
Case 51 5, mparen Mseq where s = 51 s9:
s1 Iparen by induction hypothesis on s; mparen
sg Iparen by induction hypothesis on s, mparen
$1 So Iparen by Lemma 1.7
O

1.5.2 Generalizing a theorem

We have seen in Theorem 1.4 that if a string s belongs to the syntactic category mparen, or if s mparen
holds, s has the same number of left and right parentheses, i.e., left[s] = right[s]. The result, however,
does not prove that s is a string of matched parentheses because it does not take into consideration
positions of matching parentheses. For example, s =)( satisfies left[s] = right[s], but is not a string of
matched parentheses because the left parenthesis appears after its corresponding right parenthesis.

In order to be able to recognize strings of matched parentheses, we introduce a new judgment k > s
where £ is a non-negative integer:

ks <k left parentheses concatenated with s form a string of matched parentheses
& ((--- (sisastring of matched parentheses
~——

k

The idea is that we scan a given string from left to right and keep counting the number of left parenthe-
ses that have not yet been matched with corresponding right parentheses. Thus we begin with k£ = 0,
increment k each time a left parenthesis is encountered, and decrement & each time a right parenthesis

is encountered:
k+1>s k—1>s k>0

P
k(s left k> )s

—— Peps Pright

0> e
The second premise k > 0 in the rule Pright ensures that in any prefix of a given string, the number of
right parentheses may not exceed the number of left parentheses. Now a judgment 0 > s expresses that
s is a string of matched parentheses. Here are a couple of examples:

0me L% 150
Pright
1) Prioht (the rule Pright is not applicable because 0 # 0)
25)) " 0)(
Pleft Pright
1>0) 1>))(
eft Pleft
0> (() 0> ()(
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Note that while an inference rules is usually read from the premise to the conclusion, i.e., “if the
premise holds, then the conclusion follows,” the above rules are best read from the conclusion to the
premise: “in order to prove the conclusion, we prove the premise instead.” For example, the rule Peps
may be read as “in order to prove 0 I> ¢, we do not have to prove anything else,” which implies that
0> € automatically holds; the rule Pleft may be read as “in order to prove k > (s, we only have to prove
k41> s.” This bottom-up reading of the rules corresponds to the left-to-right direction of scanning a
string. For example, a proof of 0> (()) would proceed as the following sequence of judgments in which
the given string is scanned from left to right:

0>() — 15() — 25)) — 1p) — O>e

Exercise 1.10. Rewrite the inference rules for the judgment k > s so that they are best read from the
premise to the conclusion.

Now we wish to prove that a string s satisfying 0t> s indeed belongs to the syntactic category mparen:
Theorem 1.11. If0 > s, then s mparen.

It is easy to see that a direct proof of Theorem 1.11 by rule induction fails. For example, when 0 > (s
follows from 1> s by the rule Pleft, we cannot apply the induction hypothesis to the premise because it
does not have the form 0 t> s’. What we need is, therefore, a generalization of Theorem 1.11 that covers
all cases of the judgment k 1> s instead of a particular case k = 0:

Lemma 1.12. If k> s, then ((-- - (s mparen.
——
k

Lemma 1.12 formally verifies the intuition behind the general form of the judgment & 1> s. Then Theo-
rem 1.11 is obtained as a corollary of Lemma 1.12.

The proof of Lemma 1.12 requires another lemma whose proof is left as an exercise (see Exer-
cise 1.18):

Lemma 1.13. If ((- - - (s mparen, then ((--- (()s mparen.
~—— ——

k k

Proof of Lemma 1.12. By rule induction on the judgment k &> s.

Case 0 ¢ L% wherek=0ands =«
€ mparen by the rule Meps
((-++ (s mparen from ((---(s=¢
——— ———
k k
E+1>s
Er2PS p — (s
Case = — T eft where s = (s
((--- (s mparen by induction hypothesis on k& + 1 > s
——
k+1
((--- (s mparen from ((---(s" = ((---((s"= ((--- (s
~—— ~—— ~—— ~——
k k+1 k k
k—1ps" k>0 .
Case koS Pright where s =)s’:
((--- (s’ mparen by induction hypothesison k — 1> s
~——
k—1
((---(()s' mparen by Lemma 1.13
~——r
k—1
((--- (s mparen from ((--- (()s" = ((---()s" = ((--- (s
~—— ~—— ~—— ~——
k k—1 k k

It is important that generalizing a theorem is different from introducing a lemma. We introduce
a lemma when the induction hypothesis is applicable to all premises in an inductive proof, but the
conclusion to be drawn is not a direct consequence of induction hypotheses. Typically such a lemma,
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which fills the gap between induction hypotheses and the conclusion, requires another inductive proof
and is thus proven separately. In contrast, we generalize a theorem when the induction hypothesis is
not applicable to some premises and an inductive proof does not even work. Introducing a lemma is
to no avail here, since the induction hypothesis is applicable only to premises of inference rules and
nothing else (e.g., judgments proven by a lemma). Thus we generalize the theorem so that a direct
inductive proof works. (The proof of the generalized theorem may require us to introduce a lemma, of
course.)

To generalize a theorem is essentially to find a theorem that is harder to prove than, but immedi-
ately implies the original theorem. (In this regard, we can also say that we “strengthen” the theorem.)
There is no particular recipe for generalizing a theorem, and some problem requires a deep insight into
the judgment to which the induction hypothesis is to be applied. In many cases, however, identify-
ing an invariant on the judgment under consideration gives a clue on how to generalize the theorem.
For example, Theorem 1.11 deals with a special case of the judgment k > s, and its generalization in
Lemma 1.12 precisely expresses what the judgment k 1> s means.

1.5.3 Proof by the principle of inversion

7 A
L 7 R . Inorder to apply the rule R, we first have to establish

Consider an inference rule

proofs of all the premises J; through J,, from which we may judge that the conclusion J also holds.
An alternative way of reading the rule R is that in order to prove J, it suffices to prove Jy,--- , J,. In
either case, it is the premises, not the conclusion, that we have to prove first.

Now assume the existence of a proof of the conclusion J. That is, we assume that J is provable,
but we may not have a concrete proof of it. Since the rule R is applied in the top-down direction, the
existence of a proof of J does not license us to conclude that the premises .J;,-- - , J,, are also provable.
JoJy e T

J
but using different premises. In this case, we cannot be certain that the rule R has been applied at the
final step of the proof of J, and the existence of proofs of Ji,- - - , J, is not guaranteed.

If, however, the rule R is the only way to prove the conclusion J, we may safely “invert” the rule R
and deduce the premises Ji, - - -, J,, from the existence of a proof of J. That is, since the rule R is the
only way to prove J, the existence of a proof of J is subject to the existence of proofs of all the premises
of the rule R. Such a use of an inference rule in the bottom-up direction is called the principle of inversion.

As an example, let us prove that if S n is a natural number, so is n:

For example, there may be another rule, say R' , that deduces the same conclusion,

Proposition 1.14. If S n nat, then n nat.

We begin with an assumption that S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat by the principle of inversion:

n nat
S n nat

Suce

Thus there must be a proof of n nat whenever there exists a proof of S n nat, which completes the proof
of Proposition 1.14.

1.6 Exercises

Exercise 1.15. Suppose that we represent a binary number as a sequence of digits 0 and 1. Give an
inductive definition of a syntactic category bin for positive binary numbers without a leading 0. For
example, 10 belongs to bin whereas 00 does not. Then define a function num which takes a sequence
b belonging to bin and returns its corresponding decimal number. For example, we have num(10) = 2
and num(110) = 6. You may use € for the empty sequence.

Exercise 1.16. Prove the converse of Theorem 1.9: if s Iparen, then s mparen.
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Exercise 1.17. Given a judgment ¢ tree, we define two functions numLeaf (t) and numNode(t) for calcu-
lating the number of leaves and the number of nodes in ¢, respectively:

numLeaf(leaf ) = 1

numLeaf (node (t1,n,t2)) = numLeaf(t1) + numLeaf (t2)
numNode(leaf ) = 0

numNode(node (t1,n,t2)) = numNode(t;) + numNode(ts) + 1

Use rule induction to prove that if ¢ tree, then numLeaf (t) — numNode(t) = 1.
Exercise 1.18. Prove alemma: if ((- - - ( s Iparen, then ((- - - (()s Iparen. Use this lemma to prove Lemma 1.13.
—— ——
k k
Your proof needs to exploit the equivalence between s mparen and s Iparen as stated in Theorem 1.9 and
Exercise 1.16.
Exercise 1.19. Proof the converse of Theorem 1.11: if s mparen, then 0 &> s.
Exercise 1.20. Consider an SML implementation of the factorial function:

fun fact’ 0 a = a
| fact n a = fact (n - 1) (n * a)
fun fact n = fact' n 1

We wish to prove that fact 7 evaluates to nl by mathematical induction on n > 0, where 7 stands for
an SML constant expression for a mathematical integer n. Since fact n reduces tofact 7 1, wetry

~

to prove a lemma that factt 7 1 evaluates to nl. Unfortunately it is impossible to prove the lemma
by mathematical induction on n. How would you generalize the lemma so that mathematical induction
works on n?

Exercise 1.21. The principle of mathematical induction states that for any natural number n, ajudgment
P(n) holds if the following two conditions are met:

1. P(0) holds.
2. P(k) implies P(k + 1) where k > 0.

There is another principle, called complete induction, which allows stronger assumptions in proving
P(k+1):

1. P(0) holds.
2. P(0),P(1),---,P(k) imply P(k + 1) where k > 0.

It turns out that complete induction is not a new principle; rather it is a derived principle which can
be justified by the principle of mathematical induction. Use mathematical induction to show that if the
two conditions for complete induction are met, P(n) holds for any natural number n.

Exercise 1.22. Consider the following inference rules for comparing two natural number for equality:

——— EqZero —2=™_ EqSucc
0=0 Sn=8Sm

Show that the following inference rule is admissible:

n=m n doul/)|§ n’ ; m double m’ EqDouble
n =m

Exercise 1.23. Consider yet another inductive definition of strings of matched parentheses where we
use a new judgment s tparen:

S1 tparen so tparen

Teps Tseq

€ tparen s1 (s2) tparen

Give a proof of the following lemma:
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Lemma 1.24. If s tparen and s’ tparen, then s s’ tparen.
Use Lemma 1.24 to prove the following theorem:
Theorem 1.25. If s mparen, then s tparen.

In conjunction with the result from Exercise 1.16, Theorem 1.25 proves that s Iparen implies s tparen.
Now we wish to prove this result directly, i.e., without using the judgment s mparen:

Theorem 1.26. If s Iparen, then s tparen.

Try to prove Theorem 1.26 by rule induction on s Iparen. If you can complete the proof, write it. If you
need a lemma to complete the proof, state the lemma, prove it, and use it to complete the proof.

Exercise 1.27. Consider two SML implementations of the Fibonacci function. fibl is an ordinary re-
cursive function whereas fib2  is a tail-recursive function. All arguments to both functions are assumed
to be natural numbers (which include zero).

fun fibl 0 = 0O

| fibl 1 =1

| fibl n = fib (n - 1) + fib (n - 2) II'n > 2
fun fib2 m n 0 = m

| ib2 m np =fib2 n (m + n) (p - 1) /I p >1

Use mathematical induction or complete induction to prove the following properties. We assume that
every variable (p, z, m, n) ranges over natural numbers.

fib2 (fibl  p) (fibl ( p + 1) =z =fibl ( z + p).

fib2 mmn (p+ 1) =m*fibl p+n*fibl ( p+ 1).

fibl 2 * p)+fibl p*fibl p =2 *fibl p *fibl ( p + 1).

fibl 2 * p+ 1) =fibl p*fibl p +fibl ( p + 1) *fibl ( p + 1).
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Chapter 2

Propositional Logic

This chapter develops propositional logic, i.e., logic without universal or existential quantifications. We
formulate propositional logic in the judgmental style of Pfenning and Davies [?], which adopts Martin-
Lof’s methodology of distinguishing between propositions and judgments [?]. It differs from the tradi-
tional style of formulating logic which relies solely on propositions.

2.1 Propositions and judgments

In a judgmental formulation of logic, a proposition is an object of verification whose truth can be
checked by inference rules, whereas a judgment is an object of knowledge which becomes evident by a
proof. Examples of propositions are ‘1 + 1 is equal to 0" and ‘1 + 1 is equal to 2’, both under inference rules
based on arithmetic. Examples of judgments are “’1 + 1 is equal to 0" is true”, for which there is no proof,
and ““1 + 1 is equal to 2" is true,” for which there is a proof.

To clarify the difference between propositions and judgments, consider a statement ‘the moon is made
of cheese.” The statement is not yet an object of verification, or a proposition, since there is no way to
check its truth — it becomes a proposition only when an inference rule is given. Here is an example of
such an inference rule (written in a pedantic way):

‘the moon is greenish white and has holes in it’ is true

- . MoonCheese
‘the moon is made of cheese’ is true

Now we can attempt to verify the proposition, for example, by taking a picture of the moon. That is, we
still do not know whether the proposition is true or not, but by virtue of the inference rule, we know at
least what counts as a verification of it. If the picture indeed shows that the moon is greenish white and
has holes in it, the inference rule makes evident the judgment “‘the moon is made of cheese’ is true.” Now
we know “the moon is made of cheese’ is true” by the proof consisting of the picture and the inference
rule. Thus a proposition is an object of verification which may or may not be true, whereas a judgment
is an object of knowledge which we either know or do not know, depending on the existence of a proof.

It is important that the notion of judgment takes priority over the notion of proposition. Simply
put, the notion of judgment does not depend on the notion of proposition, and we must introduce new
kinds of judgments without using particular propositions. On the other hand, propositions are always
explained with existing judgments, which include at least truth judgments because propositions must
be accompanied by inference rules for establishing their truth.

In developing a formal system of propositional logic, we use two judgments: A prop and A true.

A prop & Aisa proposition
A true & Aistrue

A prop becomes evident by the presence of an inference rule deducing A true. We will inductively
define the set of propositions using binary connectives (e.g., implication O, conjunction A, disjunction
V) and unary connectives (e.g., negation —). The inference rules will be designed in such a way that
the definition of a connective does not involve another connective. We say that the resultant system is
orthogonal in the sense that all connectives can be developed independently of each other.
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Exercise 2.1. Suppose that = A is a proposition standing for the logical negation of A and that A false

is a falsehood judgment denoting “A cannot be true.” What is wrong with the rule % —-E asa
A fal
means of explaining the notion of falsehood judgments? What about % -

AV Bt
Exercise 2.2. Why is the rule ﬁ Dl bad, apart from its strange meaning?

2.2 Natural deduction system for propositional logic

Natural deduction [?] is a principle for building a system of logic whose main concepts are introduction
and elimination rules. An introduction rule explains how to deduce a truth judgment involving a partic-
ular connective, exploiting those judgments in the premise. That is, it explains how to “introduce” the
connective in a derivation (when read in the top-down way). For example, an introduction rule for the
conjunction connective would look like:

AN B true A

A dual concept is an elimination rule which explains how to exploit a truth judgment involving a par-
ticular connective to deduce another judgment in the conclusion. That is, it explains how to “eliminate”
the connective in a derivation (when read in the top-down way). For example, an elimination rule for
the conjunction connective would look like:

A /\B true AE

An introduction rule usually conveys the intuition behind a connective and is thus relatively easy to
design. In contrast, an elimination rule extracts the knowledge represented by a judgment and careful
design is required to ensure that the resultant system is sound and complete in a sense to be explained in
Section 2.5. For example, an ill-designed elimination rule may be so strong as to extract false knowledge
that cannot be justified by its corresponding introduction rule. Or it may be too weak to deduce any in-
teresting judgment. Note that an introduction rule takes precedence over its corresponding elimination
rule because without an introduction rule, there is no use in designing an elimination rule. That is, an
elimination rule cannot be considered separately from its corresponding introduction rule whereas the
design of an introduction rule can be an isolated task.

Below we develop a natural deduction system for propositional logic, beginning with the conjunc-
tion connective A (which is the easiest case).

Conjunction

Before we investigate inference rules for A, we need to know how to build valid propositions involving
A. Hence we need a formation rule to state that A A B, read as “A and B” or “A conjunction B,” is a
proposition if both A and B are propositions:

A prop B prop
AN B prop

In order to justify the rule AF, we need an inference rule for proving the truth of AA B on the as-
sumption that there are inference rules for proving the truth of A and B. Since A A B is intended to
be true whenever both A and B are true, we use the following introduction rule to admit AA B as a
proposition:

A true B true

AN B true Al

The rule Al says that if both A and B are true, then A A B is true. It follows the usual interpretation
of an inference rule: if the premise holds, then the conclusion holds. Now we may use the rule Al to
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construct a proof of A A B true from a proof D4 of A true and a proof Dp of B true; we write A?;lu e

to mean that D4 is a proof of A true, including the last inference rule whose conclusion is A true:

Da Dg
A true B true Al
AN B true

The design of an elimination rule for A begins with A A B true as a premise. Since A A B true ex-
presses that both A and B are true, we may conclude either A true or B true from A A B true, as shown
in the two elimination rules for A:

AN B true AN B true
sz e /\EL L= v

A true B true NEr

Implication

The implication connective D requires the notion of a hypothetical proof which is a proof containing
hypotheses. We read A D B as “A implies B” or “if A, then B,” and use the following formation rule:
A prop B prop
A D B prop

The intuition behind D is that A D B true holds whenever A true implies B true, or a hypothesis of

A true leads to a proof of B true. We write a hypothesis of A true as A true , and obtain the following
introduction rule for O:

xr
A true

B true
A D B true

We may directly deduce A true using the hypothesis A true * when necessary in the proof of B true.
The premise of the rule DI” is an example of a hypothetical proof because it contains a hypothesis,
i.e., a judgment that is assumed to hold. We say that the rule DI internalizes the hypothetical proof
in its premise as a proposition A O B in the sense that the truth of A D B compactly represents the
knowledge expressed by the hypothetical proof.
There are three observations to make about the rule DI”. First we annotate both the hypothesis

oI

A true and the rule name Dl with the same label «. Thus a label in a hypothesis indicates from which
inference rule the hypothesis originates. It is not necessary to annotate all hypotheses with different
labels as long as no conflict occurs between two hypotheses with the same label. For example, the
following derivation is okay even though both hypotheses are annotated with the same label x:

x — I
A true A’ true
B true B’ true N
)i ; 7 oI*
A D B true A" D B’ true

(AD B)A (A" D B) true
Second the hypothesis A true * remains in effect only within the premise of the rule DI*. In other
words, its scope is restricted to the premise of the rule DI”. After the rule DI” is applied to deduce
AD B true, A true may no longer be used as a valid hypothesis. For example, the proof below may
not use the hypothesis A true " in the proof of in the proof D4 of A true which lies outside the scope of
A true

—_— T
A true
Dy B true e
Atrue A D B true Al

AN(AD B) true
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We say that a hypothesis is discharged when its corresponding inference rule is applied and its scope is
exited.

Note that while the premise of the rule DI is a hypothetical proof, the whole proof itself is not a
hypothetical proof. Specifically the proof D below is a hypothetical proof, but the proof £ is not:

A true
D :
£ :
B true N
A D B true ol

The reason why £ is not a hypothetical proof is that the hypothesis A true s discharged when the rule
DI* is applied, and thus is not visible to the outside. That is, we are free to use any hypothesis without
turning the whole proof into a hypothetical proof as long as it is eventually discharged.

Third the hypothesis A true ’ may be used not just once but as many times as necessary. In fact, we

may even ignore it in the proof without using it at all. Here are examples of proofs that ignore A true ‘
use it once, and use it twice:

v A true - _
B true” (not used in the proof) Atrue . Atrue
A D B true S - A true = AN A true /;Iw
B > (A D B) true A> A true - AD(ANA) true

As with the elimination rules for A, the design of the elimination rule for O begins with a premise
A D B true. Since A D B true expresses that A true implies B true, the only way to exploit it is by
supplying a proof of A true to conclude B true. Hence the elimination rule for O uses both A D B true
and A true as its premises:
A D Btrue A true
B true

DE

The following example proves (A D B) D (A D B) true using the rule DE:

AD B true Atruey L
B true v -

A>S B true ~ .
(A> B) > (A> B) true ~

(We can also prove (A D B) D (A D B) true by directly using the hypothesis A D B true )

Here are two examples involving both A and D. The two proofs show that A > (B D C) and
(AN B) D C are logically equivalent because each one implies the other. (See Section 2.3 for further
details.)

- A/\BtrueyA - A true Btruez/\l
AD (B> C) true A true . Y AN Birue’ (AN B) D C true AN B true .
B D C true - B true E R C true E =
C true y - B> C true ° v
(AN B) D C true @ AD (B DC)true @
(AS(B>C) > (AAB) D C) true ~ (AAB)>C) > (AD (B> C)) true —

Disjunction
Like A and D, the disjunction connective V is binary:

A prop B prop
AV B prop
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AV B, read as “A or B” or “A disjunction B,” is intended to be true when either A or B is true, but
we do not necessarily know which alternative is true. In our formulation of propositional logic, an
introduction rule for v concludes A V B true from a proof of either A true or B true:

A true
AV B true

B true

I _ b true
L AV B true

The design of an elimination rule for V is not obvious. A naive attempt would be to conclude one
of A true and B true from AV B true:

AV B true VEL? AV B true

Er?
A true B true VER

In a certain sense, both rules are too strong (or too powerful) because they conclude a judgment that
cannot be justified by A V B true, which does not specify exactly which of A true and B true holds. In
fact, each rule allows us to prove A true for any proposition A:

B true$
B D B true
AV (B D B) true

A true

oI

R

Since it is generally unknown which of A true and B true has been supplied in a proof of A V B true
(e.g., when AV B true is a hypothesis), the only logical way to exploit A V B true is by considering both
possibilities simultaneously. If we can prove C true both from A true and from B true for a certain
proposition C, then we may conclude C true from AV B true, since C true holds regardless of how the
proof of AV B true has been built. The elimination rule for V expresses such a way of reasoning:

A true B true Y
AV B true C true C true
VE®Y
C true

Note that A true and B true are introduced as new hypotheses and are annotated with different labels
x and y. As in the elimination rule for D, their scope is limited to their respective premises of the rule

VE™Y (ie., A true  to the second premise and B true * to the third premise), which means that both
hypotheses are discharged when C' true is deduced in the conclusion.

Unlike the elimination rules for A and D, the elimination rule for V exploits A V B true in an indirect
way in that its conclusion contains a proposition C that is not necessarily A, B, or their combination.
That is, when applying the elimination rule to A vV B true, we ourselves have to choose a proposition C
(which can be completely unrelated to A and B) such that C' true is provable both from A true and from
B true. For this reason, the inclusion of V in a system of logic makes it hard to investigate metalogical
properties of the system, as we will see later.

As a trivial example, let us prove that A true is stronger than A V B true:

A true
AV B true - z
A D (AV B) true

The converse does not hold, i.e., AV B true is strictly weaker than A true, because there is no way to
prove A true from B true for arbitrary propositions A and B:

z
B true

AV B true A true Y A true (impossible)
V

A true S
(AV B) D Atrue

EV:2
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As another example, let us prove that the disjunction connective is commutative:
(AVv B) D (BVA)true

We begin by applying the rule Dl so that the problem reduces to proving B V A true from AV B true:
AV B true

BV A true
(AV B) D (BV A) true =

x

At this point, the proof may proceed either in a bottom-up way by applying an introduction rule VI, or
VIr to B V A true, or in a top-down way by applying the elimination rule VE to AV B true. In the first
case, we eventually get stuck because it is impossible to prove A true or B true from AV B true. For
example, we cannot fill the gap in the proof shown below:

A\/Btruem

B true
I

BV A true v .
(AV B) D (BVA) true

In the second case, the problem reduces to separately proving B V A true from A true and from B true,
which is accomplished by applying the introduction rules for Vv:

Ly .
. A true | B true Vi
AV Bitrue. BV Atrue ' ® BV A true \/é_y’z
BV A true =

(AVv B) D (BVA)true -

Exercise 2.3. We can rewrite the elimination rule for the disjunction connective by using the implication
connective in place of hypothetical proofs:

AV Btrue ADCitrue B D C true
C true

VE
Why do we not use the new elimination rule which actually seems simpler than the previous one?

Truth and falsehood

Truth T is a proposition that is assumed to be always true. Hence a proof of T true requires no particular
evidence and is always provable, as indicated by the empty premise in its introduction rule:

T prop TF T true T

Then how do we exploit a proof of T true in an elimination rule? Since we have to provide no particular
evidence in a proof of T true, there is no logical content in it, which implies that there is no interesting
way to exploit it. Therefore T has no elimination rule.

Falsehood _L is a proposition that is never true, or equivalently, whose truth is impossible to es-
tablish. The intuition is that it denotes a logical contradiction which must not be provable under any
circumstance. Therefore there is no introduction rule for L. Interestingly, however, there is an elimina-
tion rule for L. Suppose that we have a proof of L true. If we think of L true as something impossible
to prove, or as something that is the most difficult to prove, the existence of its proof implies that we
can prove everything (which is no more difficult to prove than L true)! Therefore the elimination rule
for L deduces C' true for an arbitrary proposition C:

L true
L prop LF C true

1E
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Then why do we need an elimination rule for | at all, if it is impossible to prove L true? While it is
impossible to prove L true out of nothing, it is possible to prove L true using hypotheses. For example,
1 true in the premise of the rule _LE itself may be a hypothesis, as illustrated in the proof below:

x

1 true
C true LE [
1L > C true

In essence, there is nothing wrong with reasoning from an assumption that something impossible to
prove has been proven somehow.

We say that a system of logic is inconsistent if 1| true is provable in it, and consistent if not. An
inconsistent system is worthless because a judgment A true is provable for an arbitrary proposition A.
We will later present a proof that our system of propositional logic is consistent, whose discovery was
in fact a major milestone in the history of logic.

Truth T and falsehood L can also be viewed as the nullary cases of conjunction and disjunction,
respectively. Consider a general n-ary case A\|_, A; of conjunction with a single introduction rule and n
elimination rules:

A true fori=1,---,
Ay A; true

Ny A; true
A; true

n
Al AE; (1 <i<n)

If welet T = A_, A; with n = 0, the rule A | turns into the rule T because it comes to have an empty

premise, and each rule A E, disappears (i.e., no elimination rule for T). Similarly a general n-ary case

Vi, A; of disjunction has n introduction rules and a single elimination rule:

T4

A; true

A; true
Vi, A; true

Vi, A; true Ctrue fori=1,---,n

L(1<i< "\ E®
VIl <is<n) C true VE

If welet L = \/1;1 A; withn = 0, each rule \/ I, disappears (i.e., no introduction rule for 1), and the rule
V E turns into the rule LE because all hypothetical proofs in its premise disappear.

Now it is clear that T and L are identities for the binary connectives A and V, respectively. For
example, we can identify A A T with A: if A true is provable, then A A T true is also provable because
T true automatically holds; the converse follows by the rule AE,. Similarly we can identify A Vv L with
A:if AV L true is provable, A true must also be provable because the second alternative L ¢rue cannot
be taken; the converse follows by the rule VIy.

Negation
The only unary connective in propositional logic is negation —:

A prop
—A prop

—A, read as “not A” or “negation A,” denotes the logical negation of A, and its truth means that A cannot
be true. Below we consider three different approaches to designing inference rules for negation, all of
which provide a means to express that A cannot be true.

The first approach is to define a falsehood judgment A false denoting “A cannot be true” and then
use the following rules to deduce and exploit = A true:

A false —A true
—A true A false

(We do not discuss inference rules for deducing A false.) As in the rule DI, we say that the rule -l
internalizes A false as a proposition —A in the sense that the truth of A compactly represents the
knowledge expressed by A false.
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In the second approach, we deduce —A true if an assumption of A true leads to the provability of
every truth judgment. The rationale is that if the system is known to be consistent (and thus not every
truth judgment is provable), the provability of every truth judgment, i.e., inconsistency of the system, as
a consequence of an assumption of A ¢rue implies that the assumption must be wrong, that is, A cannot
be true.

In order to be able to express the provability of every truth judgment, we introduce a propositional
variable p which stands for any proposition. We use a parametric judgment p true, or ajudgment paramet-
ric in a propositional variable p, in the introduction rule for —:

xT
A true

p true

]

—A true

Since the premise is a hypothetical judgment, we annotate the hypothesis A ¢rue and the rule name —I
with the same label 2. Moreover we annotate the rule name —I| with the propositional variable p as well,
since p is a fresh variable whose scope is restricted to the premise. The elimination rule for — states that
proofs of both ~A true and A true license us to prove the truth of any proposition:

—A true A true
C true

-E

Note that C in the conclusion can be any proposition, including propositional variables. As an example,
we prove that A and —A cannot be true simultaneously:

e e— R ——
AN A true AN —A true
= AEg =—/— = AE
—A true NER A true E/\ L
p true e

(AN -A) true

The third approach uses a notational definition by regarding —A as a syntactic abbreviation of A D L.
That is, = plays no semantic role at all and —A is simply expanded to A O L. The notational definition
of - justifies the following rules:

Atrue”
_Lfrue o oAtrue Atrue o
- A true L true

Note that if - was defined as an independent connective rather than a notational convenience, these
rules would destroy the orthogonality of the system because the meaning of — would depend on the
meaning of L. We use the third approach in our treatment of - (which is the most popular definition in
the literature).

As an example, we prove that if A is true, then —A4 cannot be true:

= A true Y A true E
1 true B

——A true

A D ——A true

Y

—
|$

The converse =—A D A true is not provable, however, which implies that A true is strictly stronger than
——A true. That is, a proof that = A cannot be true is not enough for concluding that A is true. A failed
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A true B true AN B true E AN B true

E
A A B true Al A true L B true NER
A true
A D Btrue A true SE
: B true
B true .
A D B true ol
A true B true Y
AV B true C true C true
A true Vi B true Vi VETY
AV B true AV B true C true
A true
TI L true 1E L true = —A true A true £
T true C true —A true 1 true B

Figure 2.1: Natural deduction system for propositional logic

attempt to prove =—A D A true would look like:

—_—T
——A true
7
—_—T
——A true —A true

-

L true

A true LE =
——A D Atrue

The unprovability of ~—A D A true is a quintessential feature of the system of logic presented so far,
or any system belonging to what is known as constructive logic or intuitionistic logic. In constructive logic,
what —A true proves is not exactly the direct opposite of what A true proves. Rather it provides only
indirect evidence that there is no proof of A true by showing that the existence of such a proof leads to
a logical contradiction. In contrast, classical logic assumes that every proposition is either true or false
and has no intermediate state. Under classical logic, =—A true is indistinguishable from A ¢rue because
A is either true or false and we have positive evidence that A cannot be false. The truth table method
for proving the truth of a proposition is based on classical logic, which tries all possible combinations
of truth and falsehood values for all atomic propositions. Until we come back to the topic of classical
logic in Chapter 7, we focus only on constructive logic.

Figure 2.1 shows all inference rules of propositional logic where the set of propositions is inductively
defined as follows:

proposition A = P|AANA|ADAJAVA|T|L|-A

P is called a propositional constant and denotes an atomic proposition (e.g. ‘1 + 1 is equal to 0,” ‘1 + 1
is equal to 2" is true,” “the moon is made of cheese,” etc). The rules —I and —E are derived rules under the
notational definition A = A D L. From now on, we use the following operator precedence

2 >A>V>D

where A, V, D are all right-associative. Examples are:

-ANB = (-A)AB AANBAC = AA(BAC)

AVBVC = Av(BVC)

AvB>C = (AvB)>C ADB>C = A>(BDO)
SAABVCSD = ((FA)AB)VC) DD -
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2.3 Logical equivalence

We say that a proposition A is logically equivalent to another proposition B, written A = B, if A true
implies B true and vice versa. A notational definition of logical equivalence A = B is given as follows:

A=B = (ADB)AN(BDA)true

If A and B are logically equivalent, an occurrence of A inside any proposition may be replaced by
B (or an occurrence of B by A) without changing its meaning in that the resultant proposition remains
logically equivalent to the original proposition. Thus logical equivalences enable us to simplify a proof
involving a proposition that is logically equivalent to a less complex proposition. For example,

——A D) (ﬁ‘\‘!B D) ‘!(A\/B)) true

becomes easy (or even obvious) to prove once we transform ———A D (-——=B D> —-(AV B)) into
(mA A -B) D ~(AV B) by exploiting logical equivalences ~——A = -Aand AD (B> C)= (AAB) D C.
Below we list logical equivalences of propositional logic which are divided into three groups.

Commutativity and idempotence. A and V are commutative and idempotent. An implication A D A
is logically meaningless and reduces to T.

(Cl) AAB=BAA
(C2) AVB=BVA
(C3) A>B#B-A
(1) ANA=A
(12) AVA=A
13y A>A=T

Truth and falsehood. Each logical equivalence below deals with a proposition of the form T ¢ A, L ¢ A4,
ADT,orAD Lwhere¢is A, V,or D.

M1) TAA=A
M2) TVA=T
(M3) THOA=A

M4) 1L AA=1L
M5) LvA=A
M6) LDA=T

M7) A>T=T
(M8) A> L =-4

Interaction between connectives. Each logical equivalence below deals with a proposition of the form
A¢p(BopC)or(A¢B) D Cwheregpis A, V,or D.

(associativity of N)

(L1) AA(BAC)=(AANB)ANC

(L2) AA(BVC)=(AAB)V(AANQ)
(L3) AN(BDC)=7?

(L4) AV(BAC)=(AVB)AN(AVO)
(L5) Av(BvC)=(AvB)VvC

(Le) Av(B>(C)=7?

(L7) AD(BAC)=(ADB)A(ADCQO)
(L8) A>D(Bv(C)=7?

(L9 AD(BDOC)=(AAB)DC
(L10) (AAB)DC=AD>(BDC)
(L11) (AVB)DC=(ADC)A(BDC)
(L12) (A>B)>C=7?

(distributivity of A over V)
(no interaction)
(distributivity of v over A)
(associativity of V)

(no interaction)
(distributivity of O over A)
(no interaction)

(no interaction)

Exercise 2.4. Prove logical equivalences (L2), (L4), (L7), (L9), and (L11).
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2.4 Hypothetical judgments

While the rules in Figure 2.1 define a natural deduction system for propositional logic, they are un-
wieldy for writing hypothetical proofs. This is because no rule provides visual aid for keeping track
of the scope of each hypothesis or an apparatus for preventing a hypothesis from escaping its scope.

For example, the following hypothetical proof contains a wrong use of a hypothesis A true * outside its
scope:

A true ! ) -
A D Atrue A true (wrong use) |
A

(AD A)A A true

Whenever a new hypothesis is introduced, therefore, we could draw an imaginary contour to delin-
eate its scope, as illustrated below:

PR £ PR Y
A true A true B true Y
B true AV B true C true C true
e T,y
A D B true ol C true VE

Here the scope of a hypothesis A true * is restricted to the contour labeled z. Note that a contour may
be enclosed within another contour (as in a topography map), as shown in the following example:

g

A true

B true Y
A A B true

B D (AN B) true =
AD (B D (AANB)) true

Al

Yy

DI

The hypothesis A true ’ may be used inside the inner contour labeled y (which makes it possible to

prove A A B true by the rule Al), but the hypothesis B true ¥ cannot be used outside the inner contour.
Hypothetical judgments provide a convenient way to keep track of the scope of each hypothesis in a
hypothetical proof. A hypothetical judgment Ji,--- ,J, I J becomes evident by a hypothetical proof

deducing a judgment .J from a collection of hypotheses .J; , - - ,J,, :

Ji,oe b = } inference rules

J
Thus we may read Ji,--- ,J, - J as “if judgments Jy, - - -, J, hold, then a judgment J hold.” When
Ji,-++,Jn F J holds, we say that J; through J,, entail J, or J is a consequence of J; through J,,. Hence
F is called an entailment relation or a consequence relation. We refer to J;, 1 < i < n, as an antecedent and
J as the succedent. We often abbreviate a collection of antecedents as I', as in a hypothetical judgment
r'tJ.

In developing a natural deduction system for propositional logic, we will use hypothetical judg-
ments of the form A; true,--- , A, true - A true where antecedents and succedents are all truth judg-
ments. Before presenting its inference rules, let us investigate properties of hypothetical judgments of
the general form where antecedents and conclusions can be any judgments.

The definition of hypothetical judgments justifies two principles: reflexivity and substitution principle:

o (Reflexivity) I', J,I" I- J.

e (Substitution principle) f '+ Jand I', J - J/, then T' - J'.
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Reflexivity states that we may use a hypothesis .J to conclude J. The substitution principle states that
if we can prove a judgment J from a collection of hypotheses, we may use J as another hypothesis
whenever the same collection of hypotheses is available. That is, we may use J as a lemma once we
build a proof of I' - J.
To see how the substitution principle works, let us assume I' - J and I', J  J’ which imply that
there are two hypothetical proofs D and £ as shown below:
T r ... J
'cJ < . oD rJrJ <« &
J J'

<

Here I is a shorthand for {.J |J € T'}. Now we locate every occurrence of the hypothesis J in £ and
substitute D for it, which results in the following hypothetical proof:

r

H|
o e

g

Since the same hypothesis (e.g., one in I' ) may be used as many times as necessary (see Page 20), the
hypothetical judgment above makes evident the hypothetical judgment I' - J’, which is what the sub-
stitution principle concludes fromI'- Jand I', J - J'.

Our definition of hypothetical judgments makes two implicit assumptions: 1) the order of hypothe-
ses is immaterial; 2) a hypothesis may be used zero or more times in a hypothetical proof. These as-
sumptions are formally stated in the structural properties of hypothetical judgments:

e (Exchange) If ', J;, J;41,I" F J, then T, Jiyq, J;, T" F J.
o (Weakening) If I', T - J, then I', J', " I- J for any judgment .J'.
e (Contraction) If T, J;, J;, I+ J, then T, J;, T + J.

Exchange states that we may ignore the order of antecedents in a hypothetical judgment. Weakening

states that we may add a new antecedent without using it, thereby “weakening” what is being proven.

(T, J' J is weaker than I' - J because it draws the same conclusion from more hypotheses.) By con-

traction, we may combine two copies of the same antecedent into one. Note that by weakening, a

hypothesis may be used zero times and that by contraction, a hypothesis may be used more than once.
Here are a few further remarks on hypothetical judgments:

e Hypothetical judgments are just a “convenient” way, rather than a new way, to represent hypothet-
ical proofs. That is, the entailment relation F isjust a syntactic tool for displaying the hypotheses
and the conclusion of a hypothetical judgment while hiding its internal structure, and thus does
not introduce a new semantic notion. (In contrast, the relation = from model theory defines the
notion of semantic consequence. Hence it has nothing to do with hypothetical judgments and is
not a syntactic convenience.)

e There can be more than one hypothetical proof by which a given hypothetical judgment becomes
evident, since hypothetical judgments is concerned only with hypotheses and conclusions.

o A hypothetical judgment itself is an example of a judgment and thus may be used as an antecedent
or the conclusion in another hypothetical judgment, although we will not use hypothetical judg-
ments in such a way in our discussion of logic. In fact, Ji,--- ,J, I J can be thought of as an
abbreviation of a nested hypothetical judgment J; = (Jo & -+ - (J,, = J) - - -), where each antecedent
J; or the conclusion J may be another hypothetical judgment!
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Atrue €T I, A true = B true T'HA>DBtrue TI'F Atrue

'+ A true yp I'AD B true - T'F B true ok
I'Atrue T'F B true Al ' AAB true AE ' AA B true AE
' AAB true '+ A true L I'F B true R
TF A true | T+ B true I'Av Btrue T,Atruet Ctrue T,B truet C true E
F’FAVBtrue - TFHAVBtrue ' ¢} ' C true v
- L' L true 1E I, Atrue = L true | I'F-Atrue T'F A true £
I'ET true '+ C true 'k A true B 't L true B

Figure 2.2: Natural deduction system using hypothetical judgments

In

J
e While closely related to each other, a hypothetical judgment Jy,--- , J, - Jand arule ! R

J
are disparate concepts and thus impossible to compare for equivalence. The reason is simple:
the former is a judgment whereas the latter is an inference rule. The existence of a proof of
Ji,-+ -, Jn F J just implies that R is a derivable rule. Conversely, if the rule R is available, we

can always prove Ji, - - - , J,, - J with the following hypothetical proof:

Ji o "
J
Note, however, that the above hypothetical proof may not be the only way to prove Jy,--- , J,, = J
if we can build another hypothetical proof without using the rule R at all.
J

e A hypothetical judgment - - J with no antecedents is not equivalent to its succedent J. While
the former states that J holds unconditionally (or categorically), the latter is unaware of whether
there are hypotheses or not, and could be even a hypothesis in a hypothetical judgment. For
example, from the assumption that J entails J’ (i.e., J - J’), we can show that - - J implies - - J
by the substitution principle. The converse is not the case, however, because a proof of - - J’ does
not necessarily extend a proof of -+ J so that J follows directly from J'. (If -+ J and J were
equivalent, the converse would also be the case.)

e An important consequence of the structural properties is that the two hypothetical judgments
in each rule, I' - J from the if part and IV I J from the then part, represent hypothetical proofs
not only of the same size (in terms of the number of applications of inference rules) but also
of completely the same structure. As a result, when structural induction (or rule induction) is
applicable to I' - J, we may apply structural induction on T & J instead.

Figure 2.2 shows a natural deduction system for propositional logic using hypothetical judgments,
which reuses the inference rule names from the previous natural deduction system. We use hypothetical
judgments of the form I' - A true where I' is a collection of truth judgments and the exchange rule is
built-in (i.e., we may reorder antecedents as we like).

The rule Hyp expresses reflexivity of hypothetical judgments. All the other rules are justified by
their counterparts in the previous natural deduction system. As an example, let us consider the rule
Dl. The premise I', A true - B true implies the existence of a hypothetical proof deducing B true from

hypotheses T' and A true (where T is a shorthand for {J |J € T'}):

!

A true
' A true - B true <=

B true
Now we apply the rule DI (in Figure 2.1) to the conclusion B true with respect to the hypothesis A true .
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That is, the application of the rule Dl designates A true as its corresponding hypothesis:

T A true

B true
A D B true

x

ol

Note that hypotheses in the proof include hypotheses T but not A true *, which is discharged when the
rule Dl is applied. That is, we have a hypothetical proof for the hypothetical judgmentI' - A D B:

xT
A true

H|

< TI'FAD>D B true
B true
A D B true

x

Dl

Thus we can prove I' - A D B true whenever we have a proof of I', A true - B true, which justifies the
rule Dl in Figure 2.2.

The use of hypothetical judgments eliminates the need to annotate hypotheses with labels. For
example, here is a proof of a hypothetical judgment - = A O (B D (A A B)) true:

A true, B true = A true Hyp A true, B true - B true Hlyp
A true, B true = A\ B true A
Atruet B D (AN B) true -

FA>S (B> (AADB)) true ~

There are two observations to make about the new natural deduction system. First each leaf in a
derivation tree for I' - C true (where I' - C true is regarded as the root) is an application of either the
rule Hyp or the rule TI. In particular, if the rule Tl is not used (which is often the case), the derivation
tree has the following form:

———— H = H
I'i = Ay true yp I, - A, true yp
I'tC true
Second the set of antecedents always expands in an inference rule as we move from the conclusion to
. . . . . I+ Atrue --- - p
its premises (i.e., in a bottom-up way). That is, an inference rule TTEC true satisfies I' C I".

Then the above derivation tree for I' - C t¢rue satisfiesI' Cc I'y, ---, ' C T',,.
Weakening and contraction are now stated as follows:

Proposition 2.5 (Structural properties).
(Weakening) IfT'F C true, then T, A true - C true.
(Contraction) IfT', A true, A true - C true, then T', A true - C true.

Proof. By induction on the structure of the proof of I' - C true and T', A true, A true - C true. For weak-
ening, the proof of I', A true - C' true has exactly the same structure as the proof of I' - C true. When
structural induction is applicable to I' - C true, therefore, we may apply structural induction on I, A true - C true
instead. A similar observation holds for contraction. O

The provability of the substitution principle confirms that the system in Figure 2.2 adheres to the
definition of hypothetical judgments. That is, if the substitution principle was unprovable, it would
indicate that some rule in Figure 2.2 was not designed according to the relation between hypothetical
judgments and hypothetical proofs.

Theorem 2.6 (Substitution). IfT' - A true and I', A true - C true, then T' F C' true.
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Exercise 2.7. To which judgment do you think structural induction must be applied in the proof of
Theorem 2.6? I' - A true or I', A true - C true? Why?

Before attempting to write a proof of Theorem 2.6, it is worthwhile to predict how the proof would
proceed. It helps us, for example, to determine to which of I' - A true and I, A true - C true structural
induction must be applied. For the sake of simplicity, let us assume that the rule Tl is not used in the
proof of I', A true - C true. (The proof of I' - A true may use the rule T1.) Then the derivation tree for
I', A true - C true has the following form

Hyp Hyp

'y, A true - C1 true Iy, Atrue - C, true

T, A true - C true

where each leaf T, A true - C; true HYP satisfies T ¢ I'; for 1 < i < n. Now consider the i-the leaf. If
C; true € T;, the antecedent A true inT';, A true - C; true plays no role in the proof and the leaf is safely
replaced by T, - C; true Hyp  1f C; = A, weweaken ' - A true = I' = C; true to obtain I';  C; true,
which is then substituted for I';, A true - C; true. Now no leaf contains A true as an antecedent, and by
propagating these changes all the way down to the root, we transform the whole derivation tree into a

new one for I' - C' true. Thus we analyze the structure of the proof of I, A true - C true to located all
leaves in it. That is, we apply structural induction on I, A true - C true rather than I' - A true.

Proof. By induction on the structure of the proof of I', A true - C true.
We consider three cases Hyp, DI, and DE.

C Ctrue e H
ase ', A true - C true P
I'EC true by the rule Hyp with C true € T’

Case T A truet C true HYP where 4 = C

I'EC true from the assumption I' - A true
I, A true, Cy true = Cy true

Case T. A true - Cy > Cy true Dl where C = C; D Cq

I, Cy true = A true by weakening I' - A true

T, Cq true = Cy true by IHonI', A true, Cy true b Cy true with I', Cy true - A true

I'ECy D Cq true by the rule DI with I', C; true - Cy true

I,AtruetC' D Ctrue T,Atruet C’ true E

Case I', A true - C true

I'C' > C true byIHonT, A true - C' D C true with ' F A true

I'=C true byIHonT, A true - C’ true with T’ F A true

'k C true by the rule DEwithT'+ C’ D C true and I' - C” true
O

Thus, given a proof D of I' - A true and a proof £ of I', A true - C true, we can always produce a
proof, written as [D/A true]€, of I' - C' true by substituting D into .

2.5 Local soundness and completeness

All the inference rules presented so far seem to make sense intuitively, but their correctness is yet to be
established in a formal way. For example, we would certainly expect an elimination rule for A by which
A true is deducible from A A B true, but not an elimination rule that deduces C true from A A B true if
C'is unrelated to A and B. Then, in designing a natural deduction system, what is the guiding principle
to which we can appeal in order to decide whether to accept or reject an inference rule? The answer is
that the system must satisfy two properties: local soundness and local completeness.
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An introduction rule compresses the knowledge expressed in its premises into a truth judgment in
the conclusion, whereas an elimination rule retrieves the knowledge compressed within a truth judg-
ment in a premise to deduce another judgment in the conclusion. The local soundness property states
that the knowledge retrieved from a judgment by an elimination rule is only part of the knowledge
compressed within that judgment. Therefore, if local soundness fails, the elimination rule is too strong
in the sense that it is capable of contriving some knowledge that cannot be justified by that judgment;
thus local soundness ensures that the elimination rule is not too strong. The local completeness prop-
erty states that the knowledge retrieved from a judgment by an elimination rule includes at least the
knowledge compressed within that judgment. Therefore, if local completeness fails, the elimination
rule is too weak in the sense that it is incapable of retrieving all the knowledge compressed within that
judgment; thus local completeness ensures that the elimination rule is strong enough. If an elimination
rule satisfies both properties, it retrieves exactly the same knowledge compressed within a judgment in
a premise.

We verify the local soundness property by showing how to reduce a proof in which an introduction
rule is immediately followed by a corresponding elimination rule. As an example, consider the follow-
ing proof in which the introduction rule Al is immediately followed by its corresponding elimination
rule AE,:

D &
A true B true

AN B true
A true

The rule AE_ is not too strong because what it deduces in the conclusion, namely A true, is one of the
two judgments used to deduce A A B true. Hence the whole proof reduces to a simpler proof D:

D &
A true B true Al D
AN B true =R A true
A true L

If the rule AE| was too strong (e.g., deducing A O B true somehow), the proof would not be reducible.
As another example, consider the following proof in which the introduction rule Dl is immediately
followed by the elimination rule DE:

Atrue
B true o D
A D B true A true
DE
B true

The rule DE is not too strong because the whole proof reduces to a smaller proof of the same judgment
B true by substituting D for the hypothesis A true “in the premise of the rule DI*:

—_x
At
rue D
: A true
B true =R
— 7% DI” D )
A D B true A true B true
DE
B true

For the natural deduction system based on hypothetical judgments, the substitution principle justifies
I' = B true when proofs of I' = A true and I', A true F B true are given:

D
I, A true - B true o £ [E/A true]D
I'-A D B true 't A true E =R I+ B true
I'+ B true
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The case of V is similar to the case of D and uses the substitution principle:

A true B true Y D
D . . A true
A true : : =—p
AV B true ' - C true C true :
c VE®Y C true
true
D
' A true &L Er
AV Btrue - I'A true - C true T, B true b C true
rrCt Vi [D/A true|€r,
rue =R ' C true

We refer to these reductions = as local reductions. Note that there are no local reductions for T and
1, since T has no elimination rule and L has no introduction rule.

We verify the local completeness property by showing how to expand a proof of a judgment into
another proof in which one or more elimination rules are followed by an introduction rule for the same
judgment. As an example, consider a proof D of A A B true. The elimination rules AE. and AEg are
not too weak because what they deduce in their conclusions, namely A true and B true, are sufficient
to reconstruct another proof of A A B true:

D D
D AN B true AN B true
AN B true =F A true L B true
AN B true

NER

Al

If the elimination rules were too weak (e.g., being unable to deduce A true somehow), the proof would
not be expandable.

As another example, consider a proof D of A D B true. We can reconstruct another proof of the same
judgment after applying the elimination rule DE to D, which implies that the rule DE is not too weak:

D o
D A D Btrue A true SE
A D B true =E B true S

A D B true

In expanding the proof D, we have to choose a fresh label x that is not already in use in D, for any

undischarged hypothesis B true * with the same label z in D becomes associated with the rule DI,
resulting in an incorrect proof if A # B. For the natural deduction system based on hypothetical
judgments, we weaken a proof D of I' = A O B true to obtain a proof of I', A true - A D B true when
reconstructing another proof of I' - A D B true:

D Hyp
D I Atrue AD Btrue T, A truet A true £
I'HAD B true —E I', A true = B true -
I'AD B true
The case for V is given as follows:
D D A true B true
AV B true =—FE AV Bitrue AV Btrue " AV B true \/ERx’y
AV B true
Hyp Hyp

D D ', A true - A true y I', B true - B true y
'+ AV B true —E T-AVBtrue T,Atrue AVBtrue '~ T,Btruet AV B true ' <
VE

'+ AV B true

We refer to these expansions = g as local expansions.
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Although there are no local reductions for T and L, there are local expansions for T and L. Recall
that T and L are the nullary cases of conjunction and disjunction, respectively. Hence a proof D of
T true expands to another proof of T true that uses zero elimination rules and thus ignores D:

D
T true —E T true

Tl

Similarly a proof of L true expands to another proof of L true that uses zero introduction rules:

D D
1 true > E & true 1E
1 true

As every connective satisfies local soundness and completeness, the natural deduction system for
propositional logic is said to be locally sound and complete. When the system is extended with a
new connective, quantifier, or modality, we have to check that the system remains locally sound and
complete by finding its local reduction and expansion, as we will see later.

2.6 Normal proofs

We have seen that a proof containing a defour, i.e., an introduction rule immediately followed by a
corresponding elimination rule, can be transformed to another proof by applying a local reduction. It
turns out that for every proof of A true, there is a sequence of local reductions that lead to another
proof of A true containing no detour (the normalization theorem). We refer to the resultant proof as a
normal proof. A normal proof is the most direct proof because a detour may be thought of as an example
of indirect reasoning. Moreover it is minimal in size in a certain sense, irrespective of the size of its
syntactic representation, because it does not reduce to another proof.

Since a normal proof contains no detour, it has the following form where top-down applications of
elimination rules meet bottom-up applications of introduction rules in the middle:

Aq true o A,, true o
! ! !
elimination rules

! i
!
T
T T
introduction rules
T T T
C true

Thus the structure of a normal proof conforms to our intuition in building a proof by repeatedly ap-
plying introduction rules in a bottom-up way, adding new hypotheses, and repeatedly applying elim-
ination rules in a top-down way, starting from hypotheses. Here is an example of a normal proof of
(AANB) D (BAA) true:

AN B true AN B true
B true N\Er A true /\I/\EL
B A A true =

(AANB) > (BAA) true ~
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A proof of (A A B) D (B A A) true that is not normal contains detours in it:

AN B true . AN B true . AN B true . AN B true .
A true B true Al (detour) A true B true Al (detour)
AN B true AN B true
—————— AEg == AE_
B true A true Al

B A A true S
(AAB) D (BAA) true

Normal proofs are an indispensable tool in the study of logic because of their soundness and com-
pleteness properties: A true holds if and only if there is a normal proof of A true. The soundness prop-
erty holds trivially because a normal proof is just a proof of a special form. The completeness property
(that every proof has a corresponding normal proof) has two important consequences. First, in order
to prove A true, it suffices to find a normal proof of it. When proving A true, for example, it is safe to
ignore proofs of the following form which cannot be normal proofs:

B D A true B true
A true

DE

That is, we need to concern ourselves only with the most direct proof rather an indirect proof, for
example, by introducing an intermediate proposition B as shown above. Second, in order to refute
A true, it suffices to try to build a normal proof of it (by alternating between bottom-up applications of
introduction rules and top-down applications of elimination rules) and show that the process gets stuck
or does not terminate.

Exercise 2.8. Give an informal argument why =—A4 DO A true is not provable.

To formalize all these ideas, we introduce two new judgments: neutral judgments A| and normal
judgments AT. A neutral judgment A | becomes evident by a neutral proof of A true which is either a
hypothesis or an elimination rule applied to another neutral proof, whereas a normal judgment AT
becomes evident by a normal proof of A true which is either a neutral judgment or an introduction
rule applied to another normal proof. Thus the direction of the arrow in each judgment coincides with
the direction in which the proof construction should proceed. Specifically we exploit an existing neutral
judgment A | in order to deduce another judgment by determining which elimination rule to be applied;
hence the proof construction from a neutral judgment always proceeds downward (|). For a normal
judgment AT whose proof is incomplete yet, we determine which introduction rule must be applied
in order to deduce it; hence the proof construction from a normal judgment always proceeds upward
(T)- When a neutral judgment A | meets a normal judgment A7 in the middle, the proof construction is
finished.

Figure 2.3 shows the inference rules for neutral and normal judgments. The rule ], called the co-
ercion rule, says that a neutral proof is a normal proof, and a typical construction of a normal proof is
completed with an application of the rule []. All the other rules are designed according to our intuition
on building the most direct proofs, and thus are best read by following the direction of the arrow in
each judgment. For example, suppose that we wish to build () a new proof of A O B true:

ADB1

In order to build the most direct proof of A O B true, we first assume A ¢rue as a hypothesis which is
to be exploited (|) in deducing another judgment:

Al
AD.BT
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Bl _, A>Bl Al __ Al B ANB|

ANB]|
A5BT Bl o Aam M A M T M
Al B1 AV B| c1 CT oy
aver v v VW c7 VE;
Al°
1y Al LT LAl A
=Th FAE i —pow S

Figure 2.3: Inference rules for neutral and normal judgments

Then we try to build (T) a proof of B true, which is precisely what the rule Dl; expresses:

Al
BY
AD BT

As another example, suppose that we wish to exploit (|) an existing proof of A D B true:

ADB|

In order to exploit it in the most direct manner, we need a proof of A true, which we do not have yet.
Therefore we first build () a new proof of A true:

ASB| Al

A proof of A true then allows us to deduce B true. Since we now have a proof of B true ready for use in
deducing another judgment, we classify it as a neutral judgment, which is precisely what the rule DE,
expresses:
ADB| A7
Bl

Exercise 2.9. Analyze all the remaining rules in an analogous way. Note that the rule VE; superficially
deduces a normal judgment C'T by applying an elimination rule, thereby contradicting our intuition on
a normal judgment which is supposed to be either a neutral judgment or an introduction rule applied
to another normal judgment. The essence of the proof of C T, however, is found not in the application
of the rule VE; itself but in the two premises deducing C' 1. In this regard, the rule VE; still adheres to
our intuition on normal judgments. The rules Tl and _LE; are obtained as the nullary cases of Al; and
VEj, respectively.

The rules in Figure 2.3 are all designed in such a way that a proof of a neutral or normal judgment
contains no detour. First observe that no proof of a neutral judgment ends with an application of an
introduction rule (see the rules DE|, AE_|, AEgr|). Then observe that the principal premise in each
elimination rule is a neutral judgment (e.g., A D B in the rule DE|), which has been shown not to end
with an introduction rule and thus does not give rise to a detour.
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I'',Al+B n+FA>DB| T''FHAY

TLAFAL P Frasgr T F B ~E,
LEAl DEBT o TEAABL L TEAABL o
T FAAB] T Al T - B
LobAl o TEBT o DEAVBL TLALFCT TLBLECT o
T FAVBI T FAVB] T FCi
n, DibLlp Dikal DoALELD o TiEoAl ToEA]
T FTT T FCt T FAT T F—A7 T F 1]

Figure 2.4: Inference rules for neutral and normal judgments using hypothetical judgments

As an example, we show that the proof of (A A B) D (B A A) true given earlier is indeed a normal
proof by rewriting it in terms of neutral and normal judgments; we annotate each judgment in it with
either | or T according to the rules in Figure 2.3 and check that no conflicting annotation arises:

x

ANB] AEr, AANB] AEL
Bl Al i
B1 AT
BAAT DIL

(ANB)D (BAA)T ~ !

Note that a detour is impossible to annotate with arrows | and 1:

— X

Al L
: Al B
ANBTR N ASBRR T At AVBRR Y o1 cor o,
Al : Bl o T i

As another example, we show that no proof of A vV — A7 exists where A is an arbitrary proposition:

Tlf

(stuck)

(stuck)
(stuck) LT S|z
AT AT vI
Av-AT Y Av-ar N

(Hence A V —A true is not provable in constructive logic, although it is a tautology in classical logic.)

Figure 2.4 shows an equivalent system for neutral and normal judgments using hypothetical judg-
ments 'y FATand I') F A|, whereI'y = {A| | A € T'} is a collection of neutral judgments and the
exchange rule is built-in; we reuse the inference rule names from the previous system for neutral and
normal judgments. The two structural properties, weakening and contraction, are stated as expected.
As it is based on hypothetical judgments, the system also satisfies the substitution principle.

Proposition 2.10 (Structural properties).
(Weakening) IfI''-C|, then'\,A|+C].
Ty FCT, thenT Al FCT.
(Contraction) IfI'\,A|,A|FC|, thenT,A|FC|.
IfT A, Al FC1,thenT Al - C1.
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Theorem 2.11 (Substitution).
T FAland T, Al FC |, then T\ - C |.
T FAland T, Al - C1, then T, = C1.

Proof. By induction on the structure of the proof of 'y, A|FC | and T\, A| F CT. O

2.7 Normalization

We state the soundness and completeness properties of normal proofs using normal judgments as fol-
lows:

Theorem 2.12.
(Soundness)  If A1 is provable, then A true is provable.

(Completeness)  If A true is provable, then A7 is provable.

The soundness property is easy to show because every rule in Figure 2.3 is transformed into a corre-
sponding rule in Figure 2.1 by replacing all neutral and normal judgments by truth judgments (i.e., A
and A | by A true). In conjunction with the fact that a proof of a neutral or normal judgment contains
no detour, it implies that AT expresses a particular strategy for proving A true, namely a strategy that
disallows detours. For the completeness property, we prove the normalization theorem shown below.
For the moment, we do not consider disjunction Vv and falsehood L. (Chapter 4 gives another formal
proof covering all connectives in propositional logic.)

Theorem 2.13 (Normalization). For every proof of A true, there is a sequence of local reductions that lead to
a proof of AT. That is, the proof of A true resulting from the sequence of local reductions can be annotated with
arrows | and T according to the rules in Figure 2.3.

Another theorem, called the strong normalization theorem, states that every sequence of local reduc-
tions, regardless of their order, eventually terminates to yield a normal proof:

Theorem 2.14 (Strong normalization). Every sequence of local reductions starting from a proof of A true
terminates with a proof of A1. That is, there is no infinite sequence of local reductions starting from any proof of
A true.

In the presence of disjunction Vv and falsehood L (i.e., in the full system of propositional logic),
however, the normalization theorem fails! That is, a proof to which no local reduction can be applied is
not necessarily a normal proof. (The converse that a normal proof contains no detour still holds.) For
example, the following proof of (A A) D A true is not normal because annotating each judgment in it

with either | or 1 fails in the conclusion of the rule VE*'Y; here and henceforth, we abbreviate ar i
as A|T:

Atrue.  Atrue A true Y A true Y

AV Atrue AN A true N AN A true \/E;\’!’
AN A true
A true g

(AV A) D Atrue -

Y

ANl AT, Al AN

. |
AVALT “ANAT T TANAT L
ANATTL? O T
ANATILE o
app hu

(AvA) > AT !

The proof, however, contains no detour: no introduction rule is immediately followed by its corre-
sponding elimination rule. Note that the rule Al (deducing A A A true) is followed by an elimination
rule, which, however, is not a corresponding elimination rule (like AE_ or AER).
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The example suggests that in order to reduce an arbitrary proof to a normal proof, we need another
strategy for transforming proofs involving disjunction Vv and falsehood L. It turns out that we need
commuting conversions =c:

A true B true Y A true B true .
D . . . .
AV B true  C true C true agel D C true R C true
C true VE®Y AV B true C' true C’ true
VE®Y
C’ true C' true

Here the rule R is assumed to be an elimination rule, since there is no point in applying a commuting
conversion when the rule R is an introduction rule. Note that a commuting conversion allows us to
effectively ignore the elimination rule VE lying between the rule for proving C true in the second or third
premise and the rule R for proving C’ true from C' true in the conclusion. In a certain sense, the only

role that the conclusion in the rule VE plays is to indicate that both hypotheses A true “ and B true
lead to the same conclusion C true, instead of two different conclusions, say C; true and Cs true. In
other words, C true in the conclusion makes no contribution to the proof because it is the two premises
that actually prove C true. Therefore the rule VE may be ignored as far as deducing another judgment
from C true in the conclusion is concerned. If we chose the following elimination rule for V with a

side condition that both hypotheses A true “and B true * lead to the same conclusion, no commuting

conversion would be necessary:
AV B true

Atrue. B true Y

VE®Y

C true C true

Now applying a commuting conversion to the proof of (A V A) D A true shown above yields an-
other proof of the same judgment, to which a local reduction can be applied:

Atrue A true m/\l A truey A true y/\l
AN A true AN A true

AEL
VE®Y

—C AV A true A true A true
A true NE
(AV A) D Atrue

After removing the two detours in it, we obtain a normal proof annotated with arrows | and T:

z x Yy
AVvA]L AT AT ey
Al
(AvA)>AT !

Exercise 2.15. Specify a commuting conversion for L. Recall that L is the nullary case of V.

2.8 Long normal proofs

While the normalization theorem guarantees the existence of a proof of A7 for every proof of A true, it
does not address the uniqueness of proofs of AT. In fact, such a proof of A1 is not always unique! To

see why, observe that the rule AT Il has no restriction on proposition A. Therefore, if a proof of A |

is given where A is not an atomic proposition (e.g., A = A; D A;), we may either appeal to the rule [] to
deduce A1 immediately, or apply an elimination rule to A | to later build a proof of A1 by applying an
introduction rule. For example, we may prove (A O B) D (A D B)1 by applying the rule | to A D B |:

A->Bl"
AD B i1 T
(ADB)>(A>B)T !
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Alternatively we may prove the same judgment (4 D B) D (A D B)1 by decomposing A O B| until
the rule |1 is applied to B | for an atomic proposition B:

A’

AS>B[T AT
B

_ BT "

A> BT 71

(ADB)D(ADB)T

I
DEL

T
ol

If we require that proposition A in the rule | be atomic, top-down applications of elimination rules
meet bottom-up applications of introduction rules only through atomic propositions. Thus every nor-
mal proof applies elimination rules until only neutral judgments A | for atomic propositions A remain,
and starts to apply introduction rules only to normal judgments A1 for atomic propositions A. We call
such normal proofs as long normal proofs. For example, the second proof of (A D B) D (A D B) 1 shown
above is a long normal proof while the first proof is not.

Now consider the system in Figure 2.3 in which proposition A in the rule | is required to be atomic:

% 1T (A atomic)

If we can show that the original rule |I (without the requirement on proposition A) is derivable, all
the elimination rules in the system are strong enough in the sense that even if all propositions are
decomposed into atomic propositions by elimination rules, no knowledge is essentially lost. (Here it
helps to think of AT and A | as expressing a particular strategy for proving A true.) As a property
of all elimination rules collectively, it is called the global completeness property. (Recall that the local
completeness property states that a specific elimination rule is strong enough.)

The system in Figure 2.3 satisfies the global completeness property. We inductively show that the
original rule [T without the requirement on proposition A is derivable.

A
Proposition 2.16. The rule Af# is derivable.

Proof. By induction on the structure of proposition A. If A is atomic, we apply the new rule [ (with the
requirement on proposition A). We show the case A = A; D Aj:

Al
— [Hon A
A DAl Al !

Exercise 2.17. Complete the proof of Proposition 2.16.
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Chapter 3

Proof Terms

This chapter presents an alternative formulation of propositional logic using the principle called the
Curry-Howard isomorphism [?]. As a principle connecting logic and programming languages, it states that
propositions in logic correspond to types in programming languages (propositions-as-types correspon-
dence) and that proofs in logic correspond to programs in programming languages (proofs-as-programs
correspondence). Thus, by applying the Curry-Howard isomorphism to a formulation of logic, we
systematically derive a formulation of a corresponding programming language. In the case of proposi-
tional logic, we obtain a basic definition of the simply-typed A-calculus.

3.1 Proof terms

The basic idea behind the Curry-Howard isomorphism is to represent a proof D of a truth judgment
A true as a proof term M of type A:

D
A true = M:A

That is, a typing judgment M : A expresses that a proof term M of type A is a (concise) representation of
a proof of A true. When M : A holds, we say that proof term M typechecks with type A. Note that A
can be interpreted both as a proposition and as a type, depending on the context in which it is used.

Under the correspondence between proofs and proof terms shown above, each inference rule for
deducing truth judgments is translated to a corresponding typing rule for deducing typing judgments;
by convention, a typing rule is given the same name as the inference rule from which it is derived:

AtrueR — M:AR

Thus the typing rules for proof terms constitute another natural deduction system, in which an intro-
duction rule assigns to a proof term a type involving a particular connective whereas an elimination
rule uses such a proof term in its premise.

We may choose any syntax for proof terms as long as each proof term of type A provides all neces-
sary information to extract a corresponding proof of A true. Below we design proof terms according to
the syntax for the simply-typed A-calculus so as to emphasize the close connection between logic and
type theory. We use metavariables M, N, -- - for terms. Figure 3.1 shows all the typing rules for proof
terms in propositional logic where the set of proof terms is inductively defined as follows:

proof term M = x| (M,M)|fst M |snd M | z:A. M | M M |
inlg M |inrg M | case M of inlx. M |inrz. M | () | abortg M

Conjunction

Consider an application of the rule Al in which a proof D of A A B true is constructed from a proof D4
of A true and a proof Dg of B true. If proof terms M and N represent D4 and Dp, respectively, we
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use a product term (M, N) of type A A B to represent D. Thus the rule Al is translated to the following
typing rule (of the same name):

A true B true Al M:A N:B Al
AN B true = (M,N): ANB

We use projection terms fst M and snd M in translating the rule AE; and AEg; fst and snd stand for ‘first
projection” and “second projection,” respectively:

AN B true M:A/\B/\EL A N B true AER M:ANB

A true NEL e fstM: A B true A snd M : B NEr

Implication

Suppose that we wish to convert to a proof term a proof D of A O B true that applies the rule Dl to a
hypothetical proof £ of B true:

A true !
&
D .
B true N
A D B true ol

In order to build a proof term M representing £, we first need to assign a proof term to the hypothesis
Atrue . Since A true is just a hypothesis without a concrete proof, its corresponding proof term is also
unknown. Hence we represent Atrue as a variable z, for which we can later substitute another proof
term (like we substitute a concrete proof of A true for the hypothesis A true “):

Atrue. <<= z:A4

If M represents £, we use a A-abstraction Ax: A. M to represent D:

A true z: A
: — :
B true M:B
————— DI” Dl
A D B true Me:A.M:ADB

We say that variable z is bound in the A-abstraction Az: A. M. Note that we may rename z to another
variable without changing the meaning of Az: A. M. For example, both Az:A. (z,z) and Ay: A. (y,y)
represent the same proof, since using a different label for the same hypothesis does not alter the struc-
ture of the proof. (Renaming a bound variable in a A-abstraction is commonly called a-conversion.)
Similarly to the rule Dl in propositional logic, the typing rule Dl restricts the scope of the hypothesis

x: A to its premise. As a result, the hypothesis « : A is discharged when the rule Dl is applied, and
variable x in Az:A. M can be assigned type A only if it appears within M. For example, Az: A. x has
type A D A, but (Az: A. z, z) cannot be assigned a type and fails to typecheck. Also the hypothesis z : A

may be used not just once but as many times as necessary. Hence proof term M in Az : A. M may contain
any number of occurrences of variable z, as illustrated below:

L y: A
x: B (not used in the proof) I A x:A Al

Ay:A.x:ADB | T A | (x,z) : ANA |
Ax:B.Ay:A.x: B> (ADB) - Az ADA " Az: A (x,2): AD (AN A) -

(See Page 20 for proofs of corresponding truth judgments.)
As a proof term corresponding to the rule DE, we use a M-application M N:
A D B true AtrueDE M:ADB N:ADE
B true — MN:B
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The following example uses the rule DE to typecheck Ax: A > B. Ay: A.z y:

r:ADB y:A
zy:B
AN:Azy: ADB -
AM:AD B My:A.xy:(ADB)D(ADB)

DE
I

Dl

Disjunction

As proof terms corresponding to the rule VI, and VIg, we use injection terms inl 4 M and inrq M;inl and
inr stand for “injection left” and ‘injection right,” respectively:

A true M:A

| B true Vi M : B
AVBtrue 'Y <7 nigM:AVB R

Vi AV B true intra M : AV B

VIg

We annotate an injection term inl4 M or inry M with a type A so that whenever M typechecks, the
whole injection term also typechecks with a unique type.
For the elimination rule VE, we use a case term case M of inl z. N | inr y. N’; as with the rule DI, we

Yy
represent hypotheses A true “and B true  inthe premise as variables x and y:

Atrue” B true x: A y:B

— : :
M:AvB N:C N':C

@y
VE case M of inlz. N |inry. N': C vE

AV B true C true C true
C true

Variables = and y are bound in the case term case M of inl z. N | inr y. N’, and remain valid only within
N and N’, respectively. As an example, here is a proof term of type (AV B) O (B V A):

y: A Vi z:B VI
r:AVB inrpy:BVA R inlyz:BVA L
case x of inly.inrgy |inrz.inly z: BV A
Ax:AV B.case x of inl y.inrg y |inrz.inly z: (AVB)D (BV A

)DI

Truth and falsehood

We use a unit term () as a proof term for T true:

Tl Tl

T true —  ():T

Just like there is no logical content in T true, a unit term carries no useful information. As truth T has
no elimination rule, there is no more rule for ().

Since falsehood L has no introduction rule, there is no proof term for type L. For the elimination
rule LE, we use an abort term abortc M:

1 true M: 1

C true LE = aborte M : C LE

We annotate an abort term with a type C so that an unambiguous type can be assigned when M has
type L.
3.2 Type system

Since hypothetical judgments are just a syntactic tool for displaying hypothetical proofs, it is straight-
forward to extend the translation in Section 3.1 to hypothetical judgments. We continue to use the same
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r: A

M:A N:B  M:AAB . M:AAB . M:B o, M:ASB N:4
(M,N):AANB fstM:A """ sndM:B "R XA M:ADB MN:B
x: A y:B
M:A \/|L MB le MA\/B NC N/ZC \/E
inlg M : AV B inra M : AV DB case M of inlz. N |inry. N : C
M : L

O:T Tl abortc M : C LE

Figure 3.1: Typing rules for proof terms in propositional logic

x:Ael Iz:A-M:B '-M:ADB FI—N:AD

Tre:A ™  TFxeAM:ASB - TFMN:B E
I'EM:A I‘D—N:B/\I FI—M:A/\BAE FI—M:A/\BAE
L'+ (M,N): ANB FHfstM:A """ TrsndM:B "R
TEM:A | T'M:B | 'M:AvB TYyx:AFN:C T,y:BEN':C E
Trinig M:AvEB 'Y TrinmaM:AvB 'R TFcase Mofinlz.N |inry. N': C v
THEM: L
TFO:T ' TFaborto M:C *F

Figure 3.2: Typing rules using hypothetical judgments

set of proof terms to represent hypothetical proofs, but use a new typing judgment with an entailment

relation :

D
Ay true,- -, A, true b C true < Ty Ayt A B MO

The new typing judgment chooses a fresh variable z; to represent each hypothesis A; true . Note that
the new typing judgment itself is an example of a hypothetical judgment such that antecedents are
(typing) judgments of the form x; : A; and the succedent is a (typing) judgment of the form M : C'. For
the sake of simplicity, we maintain the invariant that all variables in antecedents are distinct.

Figure 3.2 shows a system of typing rules, or a fype system, based on the new typing judgment. An
antecedent z : A is called a type binding because it binds variable z to type A. I' denotes a collection of
type bindings, and is called a typing context. We assume that the exchange rule is built into the typing
judgment (i.e., we may reorder type bindings as we like). The other two structural properties are stated
as follows:

Proposition 3.1 (Structural properties).
(Weakening) IfT'FM:C,thenT ,x: A-M:C.
(Contraction) IfTlz:Ax:A-M:C, thenT,x: AF-M :C.

Proof. By induction on the structure of the proof of ' - M : Cand I',z : A, : AF M : C. O

Alternatively the proof of Proposition 3.1 may proceed by induction on the structure of proof term
M. This is because the type system in Figure 3.2 is syntax-directed: the syntactic form of proof term M
decides, or directs, a unique typing rule necessary for deducing a typing judgment I - M : C. Hence,
for example, if M is a A-abstraction Ay:Ci. M’, then I' - M : C is provable only by applying the rule
Dl, from which we conclude I', y : C; = M’ : Cy (the premise of the rule Dl) and C = C; D (. As an
illustration, we give a proof of the weakening property for the case M = \y:Cy. M':
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Case M = \y:Cy. M’

Dy:CiEM' :Cyand C =Cp D Cy by the rule DI withT'+ M : C
Ie:Ay:CiFM :Cy by induction hypothesis on M’
Dyz: AR Xy:C1. M’ : C; D Cs by the rule DI
x:A-M:C from M = M\y:C;. M’ and C = C; D Cs

In essence, the entire proof of a typing judgment I' - M : C' can be reconstructed by analyzing proof
term M, which implies that analyzing the structure of the proof of I' - M : C'is equivalent to analyzing
the structure of proof term M.

As a special case of a hypothetical judgment, the typing judgment in Figure 3.2 satisfies the two
general properties of hypothetical judgments: reflexivity and substitution principle. Reflexivity follows
from the rule Hyp. For the substitution principle, we need an operation on proof terms that corresponds

to [D/A true]&, i.e., a substitution of a proof D for a hypothesis A true in a hypothetical proof €. Sup-
pose that proof terms M and N represent proofs D and &, respectively, and that we use a variable z to

represent hypothesis A true . Then [D/A true]€ is literally translated to [M /x| N, which is our notation
for substituting M for x in N. We define [M/z]N inductively on the structure of N, where we assume
r#yand x # z:

M/zlx = M
My =
[M/z]Ax:A.N = Mx:A.N
[M/z)A\y:A.N = M\y:A.[M/z]N
[M/x](N1 Na) = ([M/x]Ny) ([M/x]Ny)
M/al(Ny, No) = ((M/a]Ny, [M/2]Ny)
[M/x]fst N = fst [M/x]N
[M/z]snd N = snd[M/xz]N
[M/zlinlg N = inlg [M/z]N
[M/x]inta N = inry [M/z]N

[M/x]case N of inl . Ny | inr z. Ny
[M/zx]case N of inl y. Ny | inr z. N case [M/x]N of inl y. [M/x]N7 | inr z. No
[M/z]|case N of inl y. Ny | inr z. Ny case [M/x]N of inl y. [M/x]Ny | inr z. [M/x] Ny
M/zl) =
[M/x]abortc N = abortc [M/z]|N

case {M/x}N of inl z. Ny | inr z. Ny
[M /]
[M]z]

In the case of [M/z]\y: A. N, we assume that y is not a free variable of M, where a free variable of
M is a variable that is not bound in A-abstractions or case terms within M. If y happens to be a free
variable of M, we say that a variable capture occurs: y, a free variable before the substitution, turns into
a bound variable after the substitution. For example, Ay: A. (z,y) and Az: A. (z, z) represent the same
proof, so [y/z]\y: A. (x,y) must be equivalent to [y/z]\z: A. (z,2) = Az: A. (y, z), which still recognizes
y as a free variable. A variable capture, however, occurs in [y/z]\y: A. (z,y) to yield Ay:A. (y,y), in
which y is used only as a bound variable. Thus, if a variable capture occurs in [M/z]A\y: A. N, we need
to rename y to a different variable. A similar restriction applies to substitutions into case terms.

Theorem 3.2 (Substitution). IfT'F M : AandT',z: AF N : C, thenT' + [M/x]N : C.

Proof. By induction on the structure of the proof of I', z : A+ N : C. We may also use induction on the
structure of proof term N.

We consider three cases Hyp, DI, and DE. In the case DI, we rename y as necessary so as to avoid
variable captures.

y:Cel
Case m Hyp where N = Yy
'ky:C by the rule Hyp withy : C € I’
I'E[M/z]y:C from [M/z]ly =y

Case T z:AFaz:C HYP where N = zand A = C
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'EM:C from the assumption ' M : A

Ik [M/z)z:C from [M/x]x = M
Iz:Ay:CiFN :Cq ' ,

Case T o A ay:CL N :CLo Gy Dl where N = \y:C1.N'and C = C7 D Co

Ny:Ci-M:A by weakening I' - M : A

T,y:Ci+F[M/x]N': Cy byIHonT,z: A,y:CiF N :Cowith,y:C1 M : A

TEAy:CL. [M/z]N': Cy D Cy by the rule DI

't [M/z]Ay:C1.N': Cy D Co from Ay:Cy. [M/z]N' = [M/z]\y:Cy. N’

Fz: AN, :C'D>C T,z:AFNy: ('

Case T2 AN, Ny : C DE where N = N; No

I'k[M/z]N;:C'>C byl[HonT,z: A- Ny :C' DCwithT'HM: A

I'E[M/z]Ny: C' byIHonT,z: AF Ny : C' withT'FM : A

I+ [M/z]Ny [M/z]Ny : C by the rule DE

Ik [M/z](N1 No) : C from [M/x]Ny [M/z]No = [M/z](N1 N2)
O

3.3 [-reductions and 7-expansions

We have seen in Section 2.5 that a local reduction removes a detour in a proof of A true to yield a
reduced proof of the same judgment. Since a proof of A true can be represented as a proof term of type
A under the Curry-Howard isomorphism, a local reduction is translated to a reduction of a proof term
to another proof term of the same type. We refer to such a reduction of a proof term as a 3-reduction; we
write M =3 N for a B-reduction of M to N.
It is easy to derive g-reductions of proof terms from local reductions of proofs. For example, we

obtain a 8-reduction of fst (M, N) to M as follows:

M:A N:B Al

(MJV):A/\B/\E =5 M: A

fst (M,N): A "

The following diagram explains how to obtain a #-reduction from a local reduction removing a detour
in which the rule Dl is immedjiately followed by the rule DE:

z: A
: [N/z]x: A
M:B =5 :
A A.M:A—B ol N:A [N/z]M : B

(\t:A.M)N : B -E

The same $-reduction from a proof using hypothetical judgments is obtained as follows:

D
I, A true = B true £ [E/A true]D
Ol —=n
I'AD B true ' A true SE T'F B true
I'+ B true
()}
I'z:A-M: B |
TFM:AM:A>B PEN:A
'F(M:AM)N:B =3 't [N/z]M : B

In this way, we obtain the following (-reductions for proof terms:

(AM:AM)N =3 [N/z2]M
fst (M,N) =3 M
snd (M,N) =3 N
caseinlg M ofinlz. N |inry. N' =3 [M
caseinrg M of inlz. N |inry. N' =5 |
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Exercise 3.3. Verify that other §-reductions are obtained from their corresponding local reductions.

A B-reduction preserves the type of the proof term being reduced. This is called the subject reduction
property because a typing judgment M : C' may be regarded as a sentence whose subject is M and
whose predicate is C. The proof exploits the syntax-directedness of the type system: for any proof term
M, there is a unique typing rule R for deducing I' - M : C; hence a proof of I' = M : C by the rule R
implies that the premise of the rule R holds as well.

Theorem 3.4 (Subject reduction). IfT'- M : Cand M =5 M’', thenT + M’ : C.

Proof. By case analysis of M =3 M'. We show three representative cases; the remaining two cases are
similar. The proof reuses metavariable M.

Case (A\z:A. M) N =3 [N/z|M

'F(M:AM)N:C assumption
'tXx:AM:AD>CandT'HN: A by the rule DE
Nrz:AFM:Cand A=A by the rule DI withI'F A z:A. M : A’ D C
'+ [N/z]M: C by Theorem 3.2 withT',z: AF M :CandI'N: A" and A= A’

Case fst (M,N) =3 M

I'kfst (M,N):C assumption
T'E(M,N):CAA by the rule AE_
'EM:C by the rule Al

Case case inlg M of inlz. N | inry. N' =3 [M /2] N

I'kcaseinlg M ofinlz. N |inry. N : C assumption
I'tinlgM:A'vVB andT,z: A/ N:CandT,y: B'-N':C by the rule VE
I'M:Aand B= DB’ by the rule VI, withT'tinlg M : A’V B’
I'F[M/z]N:C by Theorem 3.2 withI',z: A/F N:CandT'F M : A’

O

The B-reduction relation =3 can be generalized to a structural congruence relation =g such that
M =34 M’ holds if a f-reduction is applied to a subterm of M to yield M’. (Such a subterm is com-
monly called a redex, or a reducible expression.) For example, ((Az:A. M) N,N') =54 ([N/z]M,N')
holds because a subterm (Az: A. M) N reduces to [N/z]M by a S-reduction.

Figure 3.3 shows the rules for the structural congruence relation =3 . Note that there is a rule
for reducing an abort term abortc M. Since a proof term M may contain multiple subterms to which
B-reductions are applicable, the relation =g, is non-deterministic: given a proof term M, it does not
always determine a unique proof term M’ such that M =3, M’. Theorem 3.4 now extends to the
subterm subject reduction property:

Theorem 3.5 (Subterm subject reduction). If '+ M : Cand M =5 M', thenT' - M' : C.

Proof. By induction on the structure of the proof of M =34 M’. The proof uses Theorem 3.4. O

Like local reductions, local expansions are translated to expansions of proof terms under the Curry-
Howard isomorphism. We refer to such expansions of proof terms as n-expansions; we write M =, N
for an n-expansion of M to N.

M:ADB =, M:A Mz (x is not free in M)
M:ANB =, (fst M,snd M)
M:AVB =, caseMofinlz.inlgz|inry.inrgy
M:T =, ()
M:1 =, abort; M
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MﬁﬁM/ M:>ﬂ+M/ M:>5+M/ N:>B+N/
M =3, M Xe:AM—=—3, \i:AM MN=43, M'N MN =3, M N

M =3y M’ N =34 N’ M =p4 M’ M =5+ M’
(M,N) =534 (M',N) (M,N)=p34 (M,N') fstM =py fst M’ snd M =34 snd M’
M =5, M’ M =3, M’
inlg M =>4 inlg M'  inrg M =54 inrg M’

M =34 M’
case M of inlz. N |inry. N' =>4 case M’ of inl z. N | inry. N’

N =3, N"
case M of inlz. N |inry. N' =>4, case M of inl x. N” | inr y. N’

N' =34 N”
case M of inlz. N |inry. N' =3, case M of inl . N | inr y. N”

M =3, M’

abortc M =>4 aborte M’

Figure 3.3: Rules for the structural congruence relation =g

For example, the n-expansions for A and D are obtained as follows:

M:AANB M:AANB
M:AANB =, fstM: A snd M : B
(fst M,snd M): AAB

/\E|_ /\ER

Al

M:ADB z:A E
M:ADB =, Mz B DDI
MNe:AMz:ADB

Exercise 3.6. Verify that other n-expansions are obtained from their corresponding local expansions.

Like a B-reduction, an n-expansion preserves the type of the proof term being expanded. We can
also derive another structural congruence relation =, from the n-expansion relation =, similarly
to — B+ -

Theorem 3.7. IfT'-M : Cand M =, M', then ' = M' : C.
Theorem 3.8. If'-M : Cand M =, M', thenT'-= M’ : C.

3.4 Proof terms in normal form

Since it is a special case of a proof of A true, a proof of a neutral judgment A | or a normal judgment A7
can be represented as a proof term of a special form under the Curry-Howard isomorphism. We use an
elim(ination) term I to represent a proof of A| and an intro(duction) term I, or a proof term in normal
form, to represent a proof of A7T.

L e E:A 5o 14

Then the inference rules for neutral and normal judgments (in Figure 2.3 or Figure 2.4) are translated
to the following definition of elim terms and intro terms:

elim term E == z|EI|fstE|sndE
intro term I = E|Xx:A.T|(I,I)]|inlgI|inrgI]|case Eofinla.I|inrz.I|()|aborty E
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For example, the rule Hyp, specifies that variables be elim terms:

H
TLAIFAL ™ — T arz.atw

The rule Dl explains why Az: A. I is defined as an intro term; similarly the rule DE explains why E I
is defined as an elim term:

LLALEBT Iz:AFI:B
TLFA>B] ' < TFM:AI:A>B"
DEASBL TiHAT PEE:ADB THIDA

T.F B L= TFEI:B

Note also that the inclusion of elim terms as intro terms, not the other way around, is based on the rule

UE

Exercise 3.9. Verify that the definition of elim terms and intro terms conforms to the rules in Figure 2.3
or Figure 2.4.

With the definition of intro and elim terms, we can rewrite Theorem 2.13 as the following normal-
ization theorem for proof terms. For the moment, we do not consider proof terms for disjunction Vv and
falsehood L. We write =7, for the reflexive and transitive closure of =>4 .

Theorem 3.10 (Normalization).
For every proof term M such that I' = M : A, there exists an intro term I such that M =7 I.

Here is an example of a sequence of reductions from an ordinary proof term to an intro term, or
simply a normalization sequence; the subterm being reduced at each step is underlined:

(Ax:A.fst (z,2)) fst (y, z2) =p+ (Ax:A.fst (z,2)) y =>4 fst (y,2) =54+ ¥

There are five alternative normalization sequences:

(N At (2, 2)) 5t (3,2) > (A A, 2) Fot (3, 2) =5 5t (3,2) =>4 9

( fst (z,2)) fst (y, 2) =>p1 (Aw:A.a) fst (y,2) = p1 QaiAda) y==pry
()\x A fst (z,2)) fst (y,2) =>p+ (A\z:Afst (z,2)) y =5 (A7) y =51y
( (z,2)) fst (y, 2)
( (z,2)) fst (y, 2)

fst (y,2) =>p+ fst (fst (y, 2), 2) =>p4 fst (y,2) =5+ ¥
fst (y,2) =>p4 fst (fst (y,2),2) =p+ fst (y,2) =>p+ ¥

Two other important properties of proof terms are strong normalization and confluence. Combined
together, these two properties show that every normalization sequence produces a unique intro term.

Theorem 3.11 (Strong normalization, or termination).
For any proof term M such that T = M : A, there is no infinite normalization sequence M =31 M; =54 - - -

Theorem 3.12 (Confluence, or Church-Rosser property).
SupposeI' = M : A If M =7 Nyand M =7, N», then there exists a proof term N such that Ny =5, N
and Ny :>E LN

In order for the normalization theorem to hold in the presence of proof terms for V and L, the
definition of =3 needs to be extended by incorporating commuting conversions for proof terms. A
commuting conversion is allowed when a case term case M of inl z. N | inr y. N" appears in a position
where an elim term is expected. To simplify the definition of a commuting conversion, we use a commuting
conversion context k, which is a proof term with a hole O in a position where an elim term is expected.
We write x[M] for a proof term obtained by filling the hole in x with M. Note that » is not defined
inductively.

commuting conversion context k == OM|fstO|sndO|case Oof inlz. M |inrx. M | aborty O
Then a commuting conversion of M to IV, written as M =, N, is defined as follows:

k[case M of inlz. N |inry. N'] =, case M of inl z. sx[N] |inry.k[N']
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Exercise 3.13. Specify a commuting conversion for L. What is the result of applying a commuting
conversion to k[aborty, C]?

By extending the relation =3, with the following rule, we can show that the normalization theo-
rem holds for all kinds of proof terms:
M=.M
M = B+ M

It can also be shown that both strong normalization and confluence continue to hold.

3.5 Proof terms in long normal form

Theorems 3.11 and 3.12 imply that given a proof term M of type A, we can obtain a unique intro term
I such that M :>E 4 I. The result, however, does not mean that there exists a unique intro term, if
any, for every type A. (Remember that there is no proof term of type A if A true is not provable.) For
example, the two normal proofs of (A D B) D (A D B) 1 in Section 2.8 correspond to the following intro
terms of type (A D B) D (A D B) under the Curry-Howard isomorphism:

AM:ADB.x
A:AD B Ay:Azxy

We say that intro terms representing long normal proofs are in long normal form. Since long normal
proofs are obtained by requiring proposition A in the rule [T to be atomic, an elim term FE is eligible as
an intro term in long normal form only if it has an atomic type:

elim term E == z|EI|--
intro term in long normal form 1 E|Xz:AT]| --- where E has an atomic type

Then, for example, Az: A O B. z is not in long formal form because the type of « is not atomic.
It turns out that every intro term I can be converted into another intro term I’ in long normal form
by applying n-expansions to its subterms:

Theorem 3.14. For every intro term I, there exists an intro term I' in long normal form such that I =, I'.

In order to convert an intro term into long normal form, we apply an n-expansion to each elim term that
is used as an intro term but does not have an atomic type. For example, given an intro term Az: A O B.z, we
apply an n-expansion to variable =, which is an elim term being used as an intro term but does not have
an atomic type, to obtain another intro term Az: A D B. Ay: A. z y in long normal form.

Exercise 3.15. In the presence of L, there can be different intro terms in long normal form of the same
type. For example, Az:_L.aborty54 z and Az: L. \y:A.y are both intro terms in long normal form of
type L O (A D A). Now consider the fragment of propositional logic with the implication connective
D only. Given a type A known to have proof terms, are intro terms in long normal form unique (if we
identify proof terms up to renaming bound variables)?
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Chapter 4

Sequent Calculus

This chapter presents a sequent calculus for propositional logic. Although we set out to develop it as
a device for proving the completeness property of normal proofs (Theorem 2.12), the sequent calculus
also serves as a basis for proof search strategies implemented in theorem provers. Due to its important
role in logic, a sequent calculus is not viewed as a secondary system derivable from a corresponding
natural deduction system. Rather it is accepted as a valid formulation of a system of logic in itself,
whether a corresponding natural deduction system has been formulated or not.

4.1 Sequent calculus for propositional logic

The sequent calculus for propositional logic consists of inference rules for sequents of the formI' — C
where I' is an unordered collection of propositions. Conceptually a sequent A, - - , A, — C becomes
evident by a proof of C'T using neutral judgments A, |, ---, 4, |:

Al e Anld
Ay, Ay — C =
ar

Note that the exchange rule is built into sequents because I' in a sequent I' — C' is an unordered

collection of propositions.
It is important that unlike a hypothetical judgment I' - J in which a judgment J € T is interpreted

as a hypothesis .J , a proposition A € T in a sequent I' — C denotes just a neutral judgment A |, which

may happen to originate from a hypothesis A |, but not necessarily. For example, both proofs of C'1
shown below make evident the same sequent AN B,A — C:

ANB| AEL
Al ANB]| Al
1 o
In the left proof, A A B |, as well as A |, is available as a neutral judgment because the same hypothesis
may be used more than once. In the right proof, both neutral judgments A A B | and A| happen to
originate from hypotheses. Still, however, we may think of A € I" in a sequent I' — C as denoting a
hypothesis A | available in the proof of C'1, since as far as the proof of C'] is concerned, using A | as a
neutral judgment or as a hypothesis makes no difference.
An advantage of the sequent calculus over the natural deduction system consists in the fact that a

proof of I' — C always proceeds in a bottom-up way, which implies that every inference rule in the se-
quent calculus is best read in a bottom-up way. (This is not the case in the natural deduction system be-
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cause every elimination rule is best read in a top-down way.) Consider a sequent A;,--- , A;,--- , A, — C:

Al o AL Al

Ay, AL A, — 0 = : :
ar

For the sake of simplicity, let us assume that an introduction rule applied to C'T produces a new goal

C’ 1 without producing a new hypothesis (as is the case for the rule VI 1), and that an elimination rule

applied to A4; | produces a new neutral judgment A} | without requiring a separate proof of a normal

judgment (as is the case for the rule AE |). If we choose to apply an introduction rule to C'1, a new goal
C’7 is produced. Thus we now have to prove A,,--- , 4;,--- , 4, — C":

y a y o Al o Al e Apl
1y" " gy 0y Ap — .

Al7"'7Ai7"'7An—)C <

c'

a1
Such an inference rule in the sequent calculus is called a right rule because it focuses on the right side
Cin a sequent I' — C'. A right rule then corresponds to an introduction rule in the natural deduction

system. If we choose to apply an elimination rule to A4, |, a new neutral judgment A’ | is produced
while the goal C'1 remains the same. Thus we now have to prove A;,--- ,A4; AL, --- A, — C:

Al
Ail

Ala"'vAiaAgf";An—)C All’
Ala"'>Aia"'7A’n—>C <~

Anl

an

Such an inference rule in the sequent calculus is called a left rule because it focuses on a proposition in
the left side I' in a sequent I' — C'. A left rule then corresponds to an elimination rule in the natural
deduction system.

Keeping in mind the intuition behind sequents, let us consider each inference rule in the sequent
calculus. The first rule is an axiom which deals with initial sequents of the formI', A — A:

m Inat

Note that the rule Init corresponds not to the rule Hyp but to the rule |T in the natural deduction system:
it is not a rule using a hypothesis; rather it is a rule deducing A1 from A |.

For conjunction A, we need two left rules ALy, and AL, corresponding to the elimination rules AE |
and AEg|, and one right rule AR, corresponding to the introduction rule Al;:

F,A/\B,A—>C’/\ F,A/\B,B—>C/\L r—A I'—BR
ILAANB — C L ILAANB —C R I — AAB

AR

For implication O, we need one left rule, corresponding to the elimination rule DE|, and one right
rule, corresponding to the introduction rule D1;. Suppose that we wish to prove I'; A 5 B — C by
focusing on A O B in the left side:

I, - A>DB|
Na>bB—(C <= oo
ar
Here T', is a shorthand for {A| | A € I'}. In order to apply the rule DE| to A D B |, we first have to
build a proof of AT using I'y and A O B |, which means that we need a proof of ', A D B — A:
r, - A>DB]|

rA>oB— A
I'NN'A>B—C — I ... ADB| AT

c1
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] F,A/\B,A—>C/\L F,A/\B7B—>C/\L r— A I'—RB

T A—-almt Tarp—c M TarB—c M T T - aArB
rNaAo-B—A TI''ADB,B—C L rA—a=n
TLA>B ——C b ASB°

I'N'AvB,A—C T,AvB,B—C r— A r — B
T,AVB —C VL v AV B
-4A— A rA— 1L
r-4A—-c ' 1T—-a

AR

R

TR

I —T F,L—)CJ_L

Figure 4.1: Sequent calculus for propositional logic

Then a new neutral judgment B | becomes available for the proof of C'T, which means that it now
suffices to proveI'y) A D B,B — C:

I, -+ A>DB|

F,ADB?AADE,AD(;B,BHO ASB| AT .
) - —
r, - Bl !
an
Thus we obtain the following left rule DL; the right rule DR is obtained by a similar analysis:
'rA>B—A TVADB,B—C(C I I'A—B
T.AS5B—C oL v asB PR

For disjunction V, we need one left rule VL, corresponding to the elimination rule VE;, and two
right rules VR, and V Rg, corresponding to the introduction rules VI 1 and VIgs; the rule VL is obtained
in a similar way to the rule DL:

rAvB,A—C T,AVvB,B—~C r— A VR r —B
T.AVB —C VL v Ay V™ TS AVEB

VRg

The rule VL is designed in such a way that commuting conversion is built into the sequent calculus.
To see why, observe that I', AV B — (' in the conclusion describes a proof of the goal C'1 in which
the rule VE is to be applied to AV B|. ThenI';AV B,A — CandI', AV B, B — C in the premises
indicate that the rule VE applied to AV B | uses the same goal C'{ in its conclusion. According to the
rule VL, therefore, the conclusion in any instance of the rule VE in the natural deduction system is
always the current goal, which means that commuting conversion is built into the sequent calculus.

For truth T, we need a right rule TR corresponding to the introduction rule T1, but no left rule
(because there is no elimination rule for T); for falsehood L, we need a left rule L L corresponding to
the elimination rule _LE, but no right rule (because there is no introduction rule for _L):

TR

r—T F,L—>C’J'L

Figure 4.1 shows all the inference rules in the sequent calculus for propositional logic. Note that
each rule R focuses on a proposition in the sequent of the conclusion, which appears in the left side if
R is a left rule, in the right side if R is a right rule, and in both sides if R is the rule Init. For example,
the rule ALy, focuses on A A B in the left side, the rule AR on A A B in the right side, and the rule Init
on A. We refer to such a proposition as the principal formula of the rule.

The rules =L and —R are obtained from the notational definition ~A = A O L. In particular, the rule
—L implicitly uses the rule L L:

IAS 1L —A F,ADJ.J.—»CJ‘é
ILA>1l -C -
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As in the natural deduction system, the weakening and contraction properties allow us to use a
proposition A € T zero times and more than once, respectively, in a proof of I' — C. Note that the
structural properties allow us to identify two sequents ' — C and I'" — C'if " and I’ are equivalent
as sets (rather than as multisets), i.e., {A| AT} ={A| A T'}.

Proposition 4.1 (Structural properties).
I't = {A]| | A € T} is a collection of neutral judgments.
(Weakening) IfT' — C, then ', A — C.
(Contraction) IfT',A,A— C,thenT'|A — C.

Proof. By induction on the structure of the proof of ' — C andI'; A, A — C. O

The sequent calculus in Figure 4.1 satisfies the subformula property that every proposition (or formula)
in the premise of a rule is a subformula of a certain proposition (or formula) in the conclusion, where
the subformula relation is defined as follows: (1) A is a subformula of A; (2) A and B are subformulae
of AD B, AANB, and AV B. For example, the premise of the rule AL, introduces a new proposition
A, which is a subformula of A A B in the conclusion; the premises of the rule AR introduce two new
propositions A and B, both of which are subformulae of A A B in the conclusion.

Because of the subformula property, a proof of I' — C' needs to consider only subformulae of those
propositions in ' or C. For example, a proof of - — A D (B D C) never involves an analysis of A D B
by applying the rule DL or DR because it is not a subformula of A > (B D C). In conjunction with the
structural properties, therefore, the subformula property implies that the sequent calculus in Figure 4.1
is decidable: there exists a procedure for deciding whether I' — C' is provable or not. Intuitively a
proof of I' — C generates a finite number of sequents because only a finite number of propositions
need to be considered.

Proposition 4.2. The sequent calculus in Figure 4.1 is decidable.

Proof. Let us write I'* for a set {A | A € I'} consisting of elements of a multiset I'. By the structural
properties, I' — C' is provable if and only if I'* — C' is provable. When proving a sequent, therefore,
we implicitly use only those sequents of the form I'* — C' in which no proposition appears more than
once in I'*.

Suppose that we wish to check the provability of the goal sequent I' — C'. First we generate the
set S of all possible sequents using subformulae of propositions in I' and C. S must be a finite set
because of the subformula property. (If I' and C produce n different subformulae, there are a total of
2" x n sequents in S.) Next we check each sequent in S and mark it as “proven” if it is provable by
the rule Init, TR, or LL, which are the rules with no premise. Then, for each rule except Init, TR,
or L L, we consider all possible combinations of those sequents marked as “proven” for its premise,
and mark as “proven” the sequent corresponding to the conclusion if it is not marked as “proven”
yet. For example, for the rule ALy, we mark every sequent of the form I') A A B — C' as “proven” if
I' AN B, A — C is already marked as “proven.” Similarly, for the rule DL, we mark every sequent
of the formI'y)A D B — C as “proven” if ''A D B — Aand I', A D B, B — C are already marked
as “proven.” We repeat the procedure until no more sequent in S can be marked as “proven.” The
procedure must eventually terminate because the number of combinations of the rules and the sequents
in S is finite. If the goal sequent is marked as “proven,” we decide that it is provable; otherwise it is not
provable. (The procedure described above is the basis for a practical proof search technique called the
inverse method.) O

The soundness and completeness properties of the sequent calculus show that it is equivalent to the
natural deduction system for normal judgments.

Theorem 4.3 (Soundness of the sequent calculus). IfT' — C, thenT', - C'1.
Theorem 4.4 (Completeness of the sequent calculus). IfI'y - C1, then I' — C.

Note that while A| € T'; in a hypothetical judgment I') - C'T denotes a hypothesis A|, A € T
in a sequent I' — C' denotes just a neutral judgment A |, which is not necessarily a hypothesis. The
discrepancy does not invalidate the two theorems, however, since as far as the proof of C'{ is concerned,
using A | as a hypothesis when it is a neutral judgment, or vice versa, makes no difference.

The proof of the soundness property is straightforward:
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Proof of Theorem 4.3. By induction on the structure of the proof of I' — C'. Below we show three repre-
sentative cases. We reuse metavariables I and C.

Case T'A— A Init

' ,AlFA| by the rule Hyp,

I'',AlFAT by the rule |7
MA>B-—A TA>B,B—C

Case T ASB——C DL

r',AoDB|FADB| by the rule Hyp,

I''A>DB|lFAT by induction hypothesisonI', A > B — A

I'',ADB|+FB| by the rule DE,

I'n,AoB|,B|FCT by induction hypothesisonI';A > B,B — C

IN,A>B|FCT by the substitution principle (Theorem 2.11)
I'rA— B

Case m DR

I'',A|-B7 by induction hypothesisonI', A — B

I''-A>BT by the rule DIy

O
On the other hand, the proof of the completeness property is not so straightforward. In fact, it is
easy to see that a direct proof attempt fails because inference rules for normal judgments use neutral
judgments as well, but the theorem does not mention neutral judgments at all. For example, if the
proof of I'; - C'T ends with an application of the rule [T, the premise is I'1 - C'|, to which induction
hypothesis cannot be applied. Therefore we need to generalize the theorem so that a hypothetical
judgment I'; - A | is also related to sequents in a certain way.
Lemma 4.5 below generalizes Theorem 4.4. The proof itself is straightforward, but formulating the
statement connecting I'; - A | to sequents is far from trivial. Theorem 4.4 follows as an immediate
consequence of Lemma 4.5.

Lemma 4.5.
IfT' Al thenT | A — CimpliesT' — C.
IfT' - C1, thenT — C.

Proof. By simultaneous induction on the structure of the proof of I'y - A | and I'y F C'7. Below we reuse
metavariables I", A, and C.

Case T, A 4] P

A, A—C assumption

rAa—c by contraction
I A|FB7

Case m DIT

rA—B by induction hypothesison '), A |+ BT

' —ADB by the rule DR
r'FA>B| T'HA

Case — ?1 FlBl : f DE;

IB—~C assumption

I'NN'A>B,B—C by weakening

r—A by induction hypothesisonI', - AT

rA>B— A by weakening

I'A>B—C by therule D> LonI'y)A D> B — AandI')AD> B,B — C

r —c¢ by induction hypothesisonT'' - A D> B | withI';A> B — C

Case % 0
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ra—aA by the rule Init
r—A by induction hypothesisonI'y F A| withI', A — A
O
The proof of Lemma 4.5 is constructive, as opposed to declarative, in the sense that it gives an algo-
rithm for converting a proof of I'; - C'1 into a proof of I' — C'. The key to understanding its construc-
tive nature is to observe that when converting I'1 - A |, a proof of I' A — C for some proposition C'is
rrAj|
ri+A7 il
creates a proof of I', A — A using the rule Init, which then serves as an assumption in converting the

given as an assumption so that a new proof of I' — C'is produced. For example, the case

premise I': = A|. The case T A|F A] HYP,  Uises the contraction property to deduce I'’ A — C
from such an assumptionI', A, A — C.

4.2 Cut elimination

We have seen that in the natural deduction system based on hypothetical judgments, reflexivity and the
substitution principle confirm that the system adheres to the definition of hypothetical judgments. That
is, failure of reflexivity or the substitution principle indicates the existence of an inference rule that does
not respect the definition of hypothetical judgments as concise representations of hypothetical proofs.
In the case of the sequent calculus, we may test its integrity by checking two similar principles,
especially in view of the fact that A € I' in a sequent I' — (' can be thought of as denoting a hypothesis

A . The first, corresponding to reflexivity in the natural deduction system, is the provability of every
initial sequent I', A — A, which directly follows from the rule Init. The second, corresponding to the
substitution principle, is the admissibility of the cut rule (where the cut rule is another rule to be explained
later):

Theorem 4.6 (Admissiblity of the cut rule). If ' — AandI') A — C, then ' — C.

Thus the admissibility of the cut rule is to the sequent calculus what the substitution principle is to
the natural deduction system: if the substitution principle fails, it indicates that the natural deduction
system is not sound (or even non-sense); similarly if the admissibility of the cut rule fails, it indicates
that the sequent calculus is not sound (or even non-sense).
A

Theorem 4.6 implies that if a new rule TI 1l is added to the natural deduction system for normal
and neutral judgments, we can safely remove any occurrence of the rule | in a proof of C'1. The
intuition is that Theorem 4.6 may be rewritten in terms of normal and neutral judgments as follows:

I

4 T I
If Tl T, then
an

a1

Since an occurrence of the rule 7] in a proof of C'T corresponds to a detour in a proof of C true, Theo-
rem 4.6 implies in turn that we can transform the entire proof of C true so as to remove any detour in it.
In this sense, Theorem 4.6 states that the natural deduction system for truth judgments is globally sound.
(Recall that the local soundness property states that a detour specific to a connective can be locally elim-
inated, without transforming the entire proof.) We will later formalize the global soundness property
as the normalization theorem (Theorem 4.8).

The proof of Theorem 4.6 proceeds by nested induction on the structure of: 1) proposition A which

is called the cut formula; 2) proof of I' — A; 3) proof of I', A — C'. Here are a few examples of applying
induction hypothesis in the proof of Theorem 4.6:

e We wish to prove thatI' — A D> BandI';A D B — C imply I' — C. Since A is a subformula
of the cut formula A O B, the induction hypothesis on A proves that " — A and I, A — '
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imply I' — C" for any I'" and C’, and also regardless of the structure of the proof of ' — A and
I"A— (.

e We wish to prove thatI' — Aand I'; A — C imply I' — C'. Suppose that the proof of ' — A
has the following structure:

D
.. IB— A
r—A
Then we weaken I'; A — (' to obtain a proof £ of ', B, A — C. Since D is strictly smaller than

the proof of I' — A, the induction hypothesis on proposition A, proof D, and proof £ yields
I', B — C, irrespective of the structure (or size) of £.

e WewishtoprovethatI’ — AandI', A — Cimply I' — C. Suppose that the proof of ', A — C
has the following structure:
£
IB,A—C'
rA—=c«¢

Then we weaken I' — A to obtain a proof D of I', B — A, which has exactly the same structure
(or size) as the proof of I' — A. Since & is strictly smaller than the proof of I'y A — C, the in-
duction hypothesis on proposition A, proof D, and proof £ yields I', B — C’. (Then we typically
apply the same rule R to deduceI' — C)

The proof of Theorem 4.6 considers all possible combinations of the last inference rule Rp in the
proof D of I' — A and the last inference rule R¢ in the proof £ of I'; A — C'. The combinations of the
rules Rp and Rg¢ are divided as follows:

1. Atleast one of Rp and Rg is the rule Init.

(@) Rp is the rule Init. In this case, we have I' = IV, A.
(b) Rg is the rule Init. In this case, we have eitherI' =T",C or A = C.
2. Neither of Rp and Rg¢ is the rule Init.
(a) Ais the principal formula of both Rp and R¢. In this case, Rp is a right rule and Rg is a left
rule.
(b) Ais not the principal formula of Rp. In this case, Rp is a left rule.
(c) Aisnot the principal formula of R¢. In this case, R¢ can be both a left rule and a right rule.
Note that 1-(a) and 1-(b) overlap because both Rp and R¢ can be the rule Init, and that 2-(b) and 2-(c)
overlap because A may be the principal formula of neither Rp nor Rg¢.
The proof of Theorem 4.6 is constructive because it gives an algorithm for building a proof of

I' — C out of proofs of I' — A and I'; A — C. The algorithm is non-deterministic because of the
overlapping cases 1-(a) and 1-(b), and 2-(b) and 2-(c).

Proof of Theorem 4.6. By nested induction on the structure of: 1) cut formula A; 2) proof of I' — 4; 3)
proof of I' A — C'. Here we consider the fragment of the sequent calculus with the rules Init, DL, and
DR only.

We write D :: J or 7} to say that D is a proof of J. Let Rp be the last inference rule in the proof D
of ' — A and Rg¢ the last inference rule in the proof £ of ' A — C.

Case 1-(a): Rp is the rule Init. We have I’ =TV, A.

D= 4 a M
I"MAA—C assumption
I'A—2~C by contraction
r—cC fromI’'=T1"A
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Case 1-(b): R¢ is the rule Init.

Subcase: T' =T1",C

€= 1.0A—c ™
"¢ —cC by the rule Init
r —cC fromI'=1",C
Subcase: A = C
r—A assumption
r—=o= fromA=C

Case 2-(a): A is the principal formula of both Rp and Rg. We have A = 4; D A,.
D, &1 &

2
D = F,A1—>A2 R — F,A13A2—>A1 F,A1:)A2,A2—>C I
F—>A1DA2:> F,A13A2—>C -
g{ IZF—>A1 byIH onA1 DAQ, D, and 51
D =T, Ay — A1 D Ay by weakening D :: I' — A; D Ay
gé b F,AQ —C by IH on A1 D) AQ, D/, and 52
ID/l ZZF—>A2 byIHonAl,E{,Dl
r —C by IH on A, D, and &
Case 2-(b): A is not the principal formula of Rp. We haveI' =I", B; D Bs.
Dl DQ
D= F/,BlDBQHBl F,,BlDBQ,BQHA I
"B, > By — A -
E 1" By D By,By,A— C by weakening £ :: IV, By D By, A — C
E":T",B; D By,By — C by IH on A, Dy, and &’
IY,B1 D By — C by the rule DL with D; and £”
r —C fromI' =1, B; D By
Case 2-(c): A is not the principal formula of Rg¢.
Subcase: I' =I", By D B; where By D Bj is the principal formula of R¢
51 52
E F/,BlDBQ,A*)Bl FZBlDBQ,A,BQ"C I
" B, > By, A—C -
E =T",B1 D By — By byIHon A, D, and &
D' TV, By D By,By — A by weakening D :: T' — A (with' =I", B; D By)
&) T By D By, By — C by IHon A, D', and &,
I",B1 D By — C by the rule DL with £ and &)
r —C fromI' =1, By D By
Subcase: C' = Cy D Cy is the principal formula of Re
&
g T,ACH— Oy
A0 o0, F
D:T,C; — A by weakening D :: I' — A
E =T,C1 — Cy byIHon A, D', and &
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' —Cy D0y by the rule DR with &

r —C from C = C; D Cy

O

The admissibility of the cut rule has as a corollary one of the central theorems in the study of logic:

cut elimination (also called Hauptsatz meaning “main theorem”). Consider an extension of the sequent

calculus with the cut rule shown below, where we use sequents of the form I'— C' to distinguish the
extended system from the system in Figure 4.1:

r—stA IA—C
r—-c

Cut

Cut elimination states that the rule Cut is redundant:

Theorem 4.7 (Cut elimination). I' — C if and only if T—" C.

Proof. The only if part is trivial. For the if part, we proceed by induction on the structure of the proof of
I'—" C. The only interesting case is the rule Cut:

A I,A—+C

Case — o Cut

r—Aa by induction hypothesis on '—t A
ra—=c by induction hypothesis on ', A—* C
r —c= by Theorem 4.6

O

Note that the rule Cut destroys the subformula property: it does not analyze a proposition in the

conclusion, so A can be an arbitrary proposition completely unrelated to I" and C. Thus the presence of

the rule Cut makes it difficult to prove a sequent because each application of the rule Cut must “guess”

such a proposition A. Fortunately the cut elimination theorem says that the rule Cut can be discarded
without sacrificing the expressive power of the sequent calculus.

4.3 Normalization for the natural deduction system

Theorem 4.8 states that for every proof of A true, there exists a proof of AT. We now appeal to the cut
elimination theorem to prove the same result, but covering all connectives (including vV and ). Our
goal is to prove the normalization theorem stated in terms of hypothetical judgments:

Theorem 4.8 (Normalization). I' - A true if and only if ', - AT.

To this end, we introduce two annotated judgments Ty F* A| and T', F* A7, for which we use the
following rule in addition to those rules forI't - A| and 'y - AT:

I H A7
% 1
riF Al

As it is based on hypothetical judgments, the new system satisfies the substitution principle (which
extends Theorem 2.11); we assume that the exchange rule is built-in:

Theorem 4.9 (Substitution).
T F Aland T, AL F C |, then T, F C |,
T, F Aland T, AL F C1, then T, F C1.

In conjunction with the rule |1, the rule 1| effectively collapses the distinction between A1 and A |:
a proof of A7 leads to a proof of A| and vice versa. Thus both AT and A | in the new system are
essentially no different from A true, as stated in the two theorems below; I't = {A] | A true € T'} is a
collection of neutral judgments derived from truth judgments in I':

Theorem 4.10 (Soundness of the annotated judgments).
T, F Al then T+ A true.
IfT, = A7, then T+ A true.
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Proof. By simultaneous induction on the structure of the proof of ', F* A and I'; F~ AT. O

Theorem 4.11 (Completeness of the annotated judgments).
IfT I A true, then Ty F A .
IfT I A true, then Ty - A1,

Proof. By induction on the structure of the proof of I' - A true. We use the rules [ and 1| to convert
between A | and AT whenever necessary. We show two cases.

', Ay true b As true

Case TF A, 5 A, frue Dl where A= A4, D A

I, AL F Al by induction hypothesis on I', A; true = A true
T F A D A by the rule DIy, proving the second clause
TV F A D Ay by the rule 1|, proving the first clause
Case I'-B > Atrue Tl B true SE

'+ A true

NFB>A| by induction hypothesisonI' - B D A true
I F B by induction hypothesis on I' - B true
I F Al by the rule DE|, proving the first clause
L H A7 by the rule [T, proving the second clause

O

Now we can complete the proof of Theorem 4.8 by showing that '—" A and I', " A7 are equiv-

alent (Theorems 4.12 and 4.13); we use an appropriate definition of I'1 depending on the definition of
I

NrFAT < I' — 4 by Theorems 4.3 and 4.4

— I'—"4 by Theorem 4.7
— T.HF 47 by Theorems 4.12 and 4.13
< TI'kAtrue by Theorems 4.10 and 4.11

rrHA7

'k A true T Al r—A r—A4
L HAr —s"A I, A—"C
L, Al o Cut

The proof of Theorems 4.12 and 4.13 is almost the same as the proof of Theorems 4.3 and 4.4, except
for the additional case in which the rule 7| or Cut is involved. The proof of of Theorem 4.13 follows
from a lemma similar to Lemma 4.5.

Theorem 4.12 (Soundness of the sequent calculus with the cut rule). If I—stC, thenT, F C 1.
Proof. By induction on the structure of the proof of '—" C. We show the case for the rule Cut.

<A TI,A—C

Case —C Cut

L H AT by induction hypothesis on '—* A
' F A| by the rule 1|
rL,AlH O by induction hypothesis on I', A—s" C
r,H o by Theorem 4.9 with T, F* A| and T',, A| F C'1

O
Theorem 4.13 (Completeness of the sequent calculus with the cut rule). If T, " C'1, then T—" C.
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Lemma 4.14.
IfTy - AL, then ', A—* C implies T—+ C.
IfT, F C1, then T—+ C.

Proof. By simultaneous induction on the structure of the proof of I'; " A| and Ty " C'1. We show the
case for the rule 1.

+
Case w 1
''H A]
r—+A by induction hypothesis on T'y F~ A1
rNA—tcC assumption
r—-c by the rule Cut with'—" Aand I, A—+ C

O

Implicit in the proof of Theorem 4.8 is that the proof is constructive: it gives an algorithm for con-

verting a proof of I' - A true into a proof of I'y - A1. (Converting a proof of I') - A7 into a proof of

I' F A true is trivial.) It is a consequence of constructive proofs of all the theorems involved, in par-

ticular Theorem 4.13 (completeness of the sequent calculus with the cut rule) which is generalized to

Lemma 4.14, and Theorem 4.6 (admissibility of the cut rule) which is used in the proof of Theorem 4.7
(cut elimination). To be specific, we convert a proof of I'; - A7 into a proof of I' - A true as follows:

1. T+ A true to T, " A1 by Theorem 4.11. We annotate the proof of I' - A true by replacing A true
by A7 or A|, inserting the rule 1| whenever a detour is encountered.

2.7 H ATtoT—F A4 by Theorem 4.13. We insert the rule Cut whenever the rule 1| is encountered.
3. '—" Ato' — A by Theorem 4.7. We use the proof of Theorem 4.6 to remove the rule Cut.
4. I' — AtoI'i F AT by Theorem 4.3.

Thus in the heart of the proof of the normalization theorem lies the cut elimination theorem!

A corollary of the normalization theorem (or its proof) is consistency of propositional logic (or first-
order logic if universal and existential quantifiers are added): L ¢rue is not provable in propositional
logic.

Corollary 4.15 (Consistency). There is no proof of - F L true.

Proof. It suffices to show that there is no proof of - - L 1 (by the normalization theorem), or - — L (by
Theorems 4.3 and 4.4). Since no rule is applicable to - — L, there is no proof of - — L. O
Another corollary is that A V B true is provable only if either A ¢rue or B true is provable.

Corollary 4.16. If - = AV B true, then either - = A true or - = B true.

Proof. - = AV B true implies - — A V B, as shown in the proof of the normalization theorem. Since the
only way to prove - — AV B is by applying either VR, or VRp, either - — A or - — B must hold.
Therefore either - - A true or - = B true holds. O
Note, however, that I' - AV B true does not necessarily imply either I' - A true or I'+ B true if T’
is not empty. For example, B V A true - AV B true is provable, but neither B V A true - A true nor
BV A true - B true is provable.

Finally constructive logic is shown to be different from classical logic: AV —A true, which is called
the law of excluded middle and is an axiom in classical logic, is not provable in constructive logic.

Corollary 4.17. There is no proof of - = AV —A true for an arbitrary proposition A.

Proof. If - = AV = A true holds, then either - — A or - — —A holds, as shown in the proof of Corol-
lary 4.16. The first sequent is not provable for an arbitrary proposition A. The second sequent is not
provable because A — L is not provable. O
Note that the law of excluded middle assumes an arbitrary proposition A; the use of a specific propo-
sition A makes AV —A true provable. For example, by letting A = T, we obtain T V =T true, which is
certainly provable.
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Chapter 5

First-Order Logic

This chapter develops first-order logic, i.e., logic with universal and existential quantifications. Develop-
ing first-order logic is the first step toward a practical reasoning system which inevitably demands an
apparatus for expressing that a given property holds for all, or V, objects or that there exists, or 3, a certain
object satisfying a given property. Here we deal with pure first-order logic which does not stipulate a
particular class of objects. Later we will enrich it in such a way that we can express properties of specific
classes of objects such as natural numbers, trees, or boolean values.

5.1 Terms

In propositional logic, expressing properties of objects under consideration requires us to define propo-
sitional constants which denote atomic propositions. For example, in order to express that 1 is equal
to 1 itself, we would need a propositional constant Eg¢; denoting an atomic proposition ‘1 is equal to
1.” While logical connectives provide us with an elegant mechanism for reasoning about such atomic
propositions, the need for a separate propositional constant for each atomic proposition makes propo-
sitional logic too limited in its expressive power. For example, in order to express that every natural
number is equal to itself, we would have to define an infinite array of propositional constants Eq; de-
noting ‘i is equal to .’

First-order logic replaces propositional constants in propositional logic by predicates. A predicate
may have arguments and expresses a relation between its arguments. (For this reason, first-order logic
is also called predicate logic.) For example, we can define a predicate Eq so that Eq(¢;,t2) denotes a
proposition ‘t; is equal to t;.” Here the predicate Eq has two arguments ¢; and ¢, and expresses an
equality between ¢; and t;. The arguments ¢; and ¢, are called terms in first-order logic and may be
interpreted as particular mathematical objects (such as natural numbers). Thus first-order logic is a
system in which we use predicates to express properties of terms.

Note that first-order logic itself does not enforce a specific way of interpreting terms. As an example,
consider two terms 0 and s(0). As usual, we could interpret 0 as zero and s(0) as the successor of zero,
but such an interpretation is just a specific way of assigning mathematical objects to terms. Thus it is
also fine to interpret 0 as the natural number one and or s(0) as the predecessor of one. In general, we do
not formalize how to relate terms to mathematical objects, and first-order logic in our discussion (which
is based on proof theory) deals only with terms and not with their interpretations. Thus predicates
directly express properties of uninterpreted terms.

Formally we define terms as follows:

term t,s = x|y| - |alb| | fltr,c L) |
x,y,- - are called term variables which range over the set of all terms. We may substitute terms for term
variables and we write [s/z]t for the result of substituting s for x in t. a,b, - - - are called parameters and

denote arbitrary /unspecified terms about which we can make no assumption. The difference between
term variables and parameters is that a term variable is just a placeholder for another term whereas a
parameter is understood as an arbitrary term about which nothing is known. (We will see the use of
parameters in inference rules for first-order logic.)
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[ is called a function symbol and has zero or more arguments. We write f(¢1,- - , ¢,) for a term where
f is a function symbol of arity n and ¢4, - - -, t,, are its arguments. A constant c is a function symbol of
zero arity; that is, ¢ is an abbreviation of ¢(). Note that although it is usually interpreted as a function
in the mathematical sense, a function symbol f is not a function because f(t1,--- ,t,) is a term in itself
and does not reduce to another term. For example, s(0), which comprises of a function symbol s and
its argument 0, does not reduce to another term, say 1, because it is a term in itself.

Now we can define a set of terms by specifying function symbols with their arities. Here are a few
examples:

e To obtain terms for natural numbers, we use a constant 0 for zero and a function symbol s of arity
one to be interpreted as the successor function.

e To obtain terms for boolean values, we use two constants true and false.

e To obtain terms for binary trees, we use a constant leaf for leaf nodes and a function symbol node
of arity two for inner nodes.

Terms are not to be confused with proof terms. Terms can represent any kinds of objects (e.g., nat-
ural numbers, boolean values, student names, etc.) whereas proof terms represent proofs in logic. For
example, we can say that a proof term Az:A.x represents a proof of A O A, but it makes no sense to
judge the truth or falsehood of a term s(0).

5.2 Propositions in first-order logic

In addition to logical connectives from propositional logic, first-order logic uses predicates and two
forms of quantifications over terms. An inductive definition of propositions is given as follows:

proposition A = P(ty,---,tn)]| -+ |Vz.A|Ix.A
Alternatively we may use three new formation rules:
PE A prop A prop
P(ty,- - ,tn) prop Vx.A prop dz.A prop
P is called a predicate symbol. A predicate P(ty,--- ,t,) is a proposition that expresses a certain

relation between terms ty, - -, t,,. For example, we may use Nat(t) to mean that term ¢ is a natural
number, or Eq(t;,t2) to mean that terms ¢, and ¢; are equal. A propositional constant P is a predicate
symbol of zero arity; that is, P is an abbreviation of P().

V. A uses a universal quantifier V to introduce a term variable x. Roughly speaking, the truth of Vz.A
means that A is true for “every” term z. 3z.A uses an existential quantifier 3 to introduce a term variable
x. Roughly speaking, the truth of J2.4 means that we can present “some” term z for which A is true.
Quantifiers V and 3 have the lowest operator precedence. For example, V2.A D B is understood as
Vz.(A D B); similarly 3z.A D B is understood as 3z.(A D B).

As quantifiers introduce term variables, there arises a need for substitutions for term variables in
propositions or proofs. We write [t/x]A for the result of substituting ¢ for « in proposition A. Similarly
we write [t/x]D for the result of substituting ¢ for z throughout proof D. Extending substitutions for
term variables, we write [t/a]A and [t/a]D for the result of substituting ¢ for parameter a in A and D,
respectively. These substitutions for term variables and parameters are considerably simpler to define
than substitutions in the simply-typed A-calculus because variable captures never occur in first-order
logic. That is, in a substitution [¢/x]A or [t/z]D, term t is always closed and contains no free term
variables.

5.3 Universal quantification

A universal quantification Vx.A is true if A is true for every term z. For example, given that 0, s(0),
s(s(0)), - - - constitute the set of terms, we can deduce Vz. Eq(z, x) trueif Eq(0,0) true, Eq(s(0),s(0)) true,
Eq(s(s(0)),s(s(0))) true, - - - are all provable. Hence it helps to think of Vz.A as an infinite conjunction

[t1/x]A A [taf2]AN - A[ti/2]AN -
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where t1, to, - -+, t;, - - - enumerate all terms.
The inference rules for universal quantifications are given as follows:

la/x]A true @ Va.A true
Va.A true [t/x]A true

In the rule VI, parameter a denotes an arbitrary term about which we can make no assumption. Thus
we may read [a/z]A true as a shorthand for a sequence of judgments

[t1/z]A true [to/x]A true -+ [t;/x]A true

where t1, tg, - -+, t;, - - - enumerate all terms. In the rule VE, ¢ can be any term — a constant, a function
symbol, a term variable, or even an existing parameter. We justify the rule VE by reading Vz.A true as

[t1/x]A A [ta/x]AN -+ A[ti/T]AN -+ true

where t1, to, - -+, t;, - - - enumerate all terms.
It is important that in the rule VI, parameter a must be fresh and not found in any undischarged
hypothesis. For example, a proof of Vz.Nat(x) true introducing a fresh parameter ¢ must not contain

any hypothesis of the form P(a), which is an assumption on an arbitrary term about which we can
make no assumption! The presence of such a hypothesis implies that parameter a is already declared
elsewhere and thus cannot be interpreted as an arbitrary term. The following example, which tries to
prove that y is a natural number whenever 2 is a natural number, shows that using the same parameter
twice in difference instances of the rule VI results in a wrong proof:

Nat(a) truc”

Nat(a) D Nat(b) true
Vy.Nat(a) D Nat(y) true
Va.Vy.Nat(x) D Nat(y) true

VI (wrong)

Iw

v

Here is an example of a proof involving universal quantifiers where we exploit [a/z](AA B) =
[a/x)A A [a/x]B.

V2. A A B true V2. AN B true
[a/z](A A B) true [a/x](A A B) true
[a/x])A true - la/x]B true Er
Va.A true Va.B true Al
(Vz.A) A (Vx.B) true "

(Vx. AN B) D (Vx.A) A (Vx.B) true =

5.4 Existential quantification

An existential quantification 3x. A is true if there exists a term x satisfying A. For example, if £¢(0, 0) true
is provable, we can deduce 3. Eq(z, z) because substituting a concrete term 0 for « makes Eq(z, x) true
provable. Hence it helps to think of 3x.4 as an infinite disjunction

[t1/x]AV [ta/x]AV -+« Ati/x]AV -

where t1, to, - -+, t;, - - - enumerate all terms.
The inference rules for existential quantifications are given as follows:

[a/x]) A true b

[t/x] A true dz. A true C true
dz. A true C true

E&w

September 3, 2009 65



The rule 3l says that we prove Jz.A true by presenting a concrete term, or a witness, ¢ such that
[t/x] A true is provable. We justify the rule 3| by reading 3z.A true as

[t1/x]AV [ta/x]ANV - V [t;/T]AV - true

where t;, ta, -+, t;, --- enumerate all terms and ¢; = t holds. In the rule 3IE“", we annotate the

hypothesis [a/z]A true with label w. We also introduce a fresh parameter a because the witness for the
proof of dz.A true is unknown and thus we cannot make any assumption about it. Thus we may read

[a/x]) A true “
as a shorthand for a sequence of hypothetical proofs

C true

U

[t1/x])A true b [to/x] A true b [ti/x] A true 1

C true C true C true

where t1, to, - -+, t;, - - - enumerate all terms.

In the rule 3E“", parameter a must be fresh and not found in proposition A or any undischarged
hypothesis. In particular, it must not be found in proposition C. Otherwise the rule ends up with a
conclusion that makes too strong an assumption about the witness, namely that the witness can be an
arbitrary term! For example, the following proof exploits a proof of Jx.Nat(x) A Eq(x,0) true to draw
a (nonsensical) conclusion that an arbitrary term is equal to a natural number 0, as it allows parameter
a to appear in the conclusion:

: Nat(a) A Eq(a,0) true b
Jx.Nat(z) A Eq(x,0) true Eq(a,0) true
Eq(a,0) true

R
a,w

In essence, the rule 3E*" introduces parameter a in the course of proving C' true after fixing proposition
C, which implies that C is oblivious to a.

An important aspect of the rule 3l is that in order to prove 3x.A true, it is not enough to show that
there only “exists” a witness z satisfying A without actually knowing what it is. The necessity of such
a witness is indeed a distinguishing feature of constructive logic. In contrast, a proof of 3x.A true in
classical logic only needs to show that there exists a term ¢, which may or may not be known, such that
[t/x])A true is provable. In other words, a proof of Jz.A true essentially shows that it cannot happen
that there exists no term ¢ such that [t/z] A true is provable. As a consequence, 3z.A is no different from
—Vx.~A in classical logic.

To better understand the nature of existential quantifications in constructive logic, let us consider
a few examples. First do.~A D —Vx.A true is provable. Intuitively a proof of 3z.—A true gives us a
witness ¢ such that [t/z]—A true is provable, and we can use ¢ to refute Vz.A true.

Y Va.A true
[a/x]=A true  [a/x]A true
Jz.—A true 1 true gy B

1 true 2
—Vz.A true
Jdz.—A D —Vx.A true

IU}

The converse V. A D dx.—A true is not provable, however. Intuitively a proof of 3z.—A true requires
a witness ¢ such that [t/z]—A true is provable, but no proof of —=Vz.A true gives such a witness.

- w ?
—Vx.A true Va.A true
1 true

Jdz.—A true 1E
—-Vz.A D Jz.—A true

-E

Iw

66 September 3, 2009



[a/x])A true b

la/z]A true Va.A true [t/x]A true Jz.A true C true

Va.A true [t/z]A true vE Jdz. A true Jl C true JE”

Figure 5.1: Natural deduction system for first-order logic

Perhaps surprisingly, (Va.A) D (3x.A) true is not provable. The reason is that although Vz.A true
states that [t /x] A true is provable for any term ¢, it does not decide a concrete term ¢ such that [t /z] A true
is provable. In particular, if the set of terms is empty, V. A true holds trivially (because there is no term),
but 3x.A true never holds because it is impossible to choose a term ¢ for x, regardless of proposition A.

VoA true
[t/z]A true?
Jx.A true
(Vz.A) D (Fz.A) true

|

On the other hand, Vy.(Vz.A) D (3z.A) true is provable even if y does not occur free in A. The difference
from the previous example is that Vy allows us to make an assumption that the set of terms is not empty.
In the proof shown below, parameter a denotes an arbitrary term in the set of terms, and its presence
implies that the set of terms is not empty.

Va. A true

[a/x])A true

Jdz. A true v
(Vx.A) D (Fz.A) true -

Vy.(Vz.A) D (Fz.A) true

These two examples illustrate that in constructive logic, Vx.A is not equivalent to A even if x does not
occur free in A at all: Vz.A asserts A on the assumption that the set of terms is not empty, whereas A
without a universal quantifier cannot exploit such an assumption.

Figure 5.1 shows the inference rules for first-order logic.

Exercise 5.1. We have seen that a logical equivalence —-V2.A = Jx.—A fails. Check whether the fol-
lowing logical equivalence holds or not:

—Jz.A = Vz.-A

Exercise 5.2. Suppose that term variable z is not free in proposition A, but free in proposition B. That
is, we have [t/x]A = A, but [t/z] B # B in general for an arbitrary term ¢. Check if each of the following
judgments is provable.

e (ADVz.B) D (Vx.A D B) true

(

o (Vz.AD B) D (A DVz.B) true
(

(

e (AD3Jx.B) D (Jx.A D B) true

° true

( ) )
( ) )
( ) )
( ) )

Jdv.AD> B) D> (AD3Jx.B

5.5 Local soundness and completeness

To show the local soundness and completeness properties of first-order logic, we consider local re-
ductions and expansions for universal and existential quantifications. A local reduction for universal
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[a/z]A] "

o/dAT o VoAl oo lyelAl L JnAl C1

ElE(L,’w
Vz. AT 1 [t/z]Al Y 3z AT c1 1
Figure 5.2: Natural deduction system for first-order logic
quantification is given as follows:
D

[a/z] A true oo [t/a)D

Va.A true —R [t/x]A true

[t/x]A true
Since D proves [a/x]A true, we use [t/a|D to prove [t/a][a/z]A true = [t/x]A true. Similarly a local

reduction for existential quantification shown below substitutes term ¢ for parameter a:

D [a/z]A true b D
[t/x]A true . £ [t/x}A true

Jz. A true c t.rue [t/a)€

C true JEM C true

Note that [t/a]€ proves the same judgment that £ proves, namely C' true, because parameter a does

not appear in proposition C. On the other hand, [t/a]€ changes [a/x]A true “to [t/a]la/z]A true w, or

—_—w
[t/x])A true , for which D is substituted. Local expansions for universal and existential quantifications
are given as follows:

g —_—w
£ V. A true £ € [a/x])A true
Vo Atrue T7FE  [a/z]A true Jz.Atrue “F Jx.Atrue  Tw.Atrue —_ o
I TwAt &
V. A true T.A true

Reading Vz.A as an infinite conjunction and 3x.A as an infinite disjunction gives the rules for de-
ducing neutral and normal judgments in Figure 5.2. It turns out that Theorem 2.12 continues to hold
in first-order logic, and proving A true reduces to proving A1 as in propositional logic. Theorems 2.13
(normalization) and 2.14 (strong normalization) also continue to hold, provided that the following com-
muting conversion for existential quantification is available where the rule R is assumed to be an elim-
ination rule:

[a/x]A true “ [a/z]A true “
D - 5
Jz.A true C true —cC D C true
C true JE“" Jx. A true C’ true o
C' true C true 3B

We can derive the above commuting conversion from the commuting conversion for V by reading 3x.A
as an infinite disjunction.
5.6 Examples

As a concrete example of reasoning in first-order logic, let us characterize natural numbers. We use
0 as a term denoting zero and s as a function symbol denoting the successor function. We also use
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three predicates: Nat(t) to mean that ¢ is a natural number, Eq(t,t’) to mean that ¢ and ¢’ are equal, and
Lt(t, ') to mean that ¢ is less than t'.
First we need axioms as a means of defining the three predicates:

Nat(0) true Zero Vz.Nat(x) D Nat(s(x)) true Suce

By E
Vx.Eq(z, z) true 4 Vo VyVz.(Eq(z,y) A Eq(z, 2)) D Eq(y, 2) true
Lt

Lt,
Va.Lt(z,s(x)) true VaNy.Eq(x,y) D —Lt(z,y) true

The lower four axioms may be thought of as translations of the following mathematical properties:

e r—=2x.

o Ifr=yandz =z, theny = 2.
o x <x+1.

o Ifx =y, thenx £ y.

Combined with these axioms, first-order logic allows us to prove new theorems about these pred-
icates. As a trivial example, here is a proof of Nat(s(s(0))) true, which states that s(s(0)) is a natural
number:

Vz.Nat(x) D Nat(s(x)) true Suce
Va.Nat(x) D Nat(s(z)) true Suce Nat(0) D Nat(s(0)) true Nat(0) true Zero
Nat(s(0)) D Nat(s(s(0))) true Nat(s(0)) true o ~E

Nat(s(s(0))) true

Note that the two applications of the rule DE substitute different terms, namely s(0) and 0, for term
variable z in Va. Nat(z) D Nat(s(x)).

An example of using an existential quantification is a proof of Va. Nat(z) D (Jy.Nat(y) A Eq(x,y)) true
which states that if z is a natural number, there exists a natural number y such that x = y:

Va.Eq(x, ) true e
Nat(a) true Eq(a,a) true
Nat(a) A\ Eq(a,a) true
Jy.Nat(y) A Eq(a,y) true

Nat(a) D (Jy.Nat(y) A Eq(a,y)) true -
Vz.Nat(xz) O (Jy.Nat(y) A Eq(x,y)) true

z

In the application of the rule JI, we use parameter a as a witness.
Here are two more examples. The first states the commutativity of equality: z = y implies y = «
The second states that there is no term x such that = 0 and =z = 1.

e Proof of Va.Vy.Eq(x,y) D Eq(y, z) true:

E
Ve VyVz.(Eq(z,y) N Eq(x, z)) D Eq(y, z) true o

I ;P
Yy Vz.(Eq(a,y) A Eq(a,z)) D Eq(y, z) true Va.Eq(x, ) true ¢
Vz.(Eq(a,b) A Eq(a, z)) D Eq(b, z) true Eq(a,b) true Eq(a,a) true
(Eq(a,b) A Eq(a,a)) D Eq(b,a) true Eq(a,b) A Eq(a,a) true E
D

Eq(b,a) true
Eq(a,b) D Eq(b,a) true =
Yy.Eq(a,y) D Eq(y,a) true v
VaVy.Eq(x,y) D Fq(y,x) true

I’LU

|b

|a
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e Proof of =3z.Eq(x,0) A Eq(x,s(0)) true:

Lt
Va.Vy.Eq(x,y) D - Lt(x,y) true
Vy.Eq(0,y) D —Lt(0,y) true

D
Eq(0,s(0)) D =Lt(0,s(0)) true Eq(0,s(0)) true E V. Lt(x,s(z)) true
—-Lt(0,s(0)) true = Lt(0,s(0)) true
Jx.Eq(x,0) A Eq(x,s(0)) true L true -
JE
L true L
—3Jz.Eq(z,0) A Eq(z,s(0)) true
where we let
E
Va.VyVz.(Eq(x,y) A Eq(z, 2)) D Eq(y, z) true
Vy.Vz.(Eq(a,y) A Eq(a,z)) D Eq(y, z) true
D = Vz.(Eq(a,0) A Eq(a, z)) D Eq(0, z) true
(Eq(a,0) A Eq(a,s(0))) D Eq(0,s(0)) true Eq(a,0) A Eq(a,s(0)) true

Eq(0,s(0)) true -E

5.7 Proof terms

As in propositional logic, we use the Curry-Howard isomorphism to represent proofs of truth judg-
ments as proof terms. Proof terms for first-order logic are given as follows:

proofterm M == - |Xx. M| M¢t|{, M) |let{x,w)=Min M

Az. M, a proof term of type Vz.A, is a A-abstraction that takes a term ¢ and returns a proof term of
type [t/z]A. (Recall that propositions and types are equivalent under the Curry-Howard isomorphism.)
It is similar to a A-abstraction from propositional logic except that it takes a term, instead of a proof
term, as its argument. For example, given a term ¢ (denoting a natural number), Az. M may return a
proof term of type Nat(t) O Nat(s(t)). A corresponding A-application M t is a proof term of type [t/z]A
if M is a proof term of type Vz.A.

The typing rules for Az. M and M ¢ are given as follows:

la/x]M : [a/xlA M Ve A o
o.M VoA 7 Mt:[t/z]A

Here we write [t/x]M for a substitution of term ¢ for term variable z in proof term M. The rule VI*
proves that Az. M has type Vz.A by introducing a fresh parameter a and proving that [a/z]M has type
[a/z]A. For example, a proof that Az. M has type Vz.Eq(z, z) could show that [a/x] M has type Eq(a, a)
for some parameter a. Note that in the rule VI, term a appears in both proof term M and type A. This
feature of first-order logic is manifested in the rule VE: terms may appear not only in types but also in
proof terms. Intuitively a proof about a specific term ¢ needs to mention ¢t somewhere in it. (Otherwise
how can we prove a fact about ¢ at all?) Hence a proof term whose type contains ¢ also mentions ¢
somewhere in it. For example, we could use Eq; 0 as a proof term of type E£q(0,0) where Eq; assumes
type Vz.Eq(z,z). As a consequence, a substitution [¢/z]M on proof term M may need a substitution
[t/x]A on type A if x occurs inside A in M.

(t, M) is a proof term of type Jz.A. Intuitively a proof of 3z.A true requires a concrete witness ¢ and
a proof that ¢ satisfies A. Hence a proof term of type 3x.A contains such a witness ¢ and a proof term M
of type [t/z]A. For example, a proof term of type 3x.Eq(x, x) (“there exists a term z such that z is equal
to z itself”) may contain a witness 0 and a proof term of type E¢(0, 0) (“0 is equal to 0). Thus we obtain
the following typing rule for (¢, M):

M :[t/z]A
(t,M) :3z.A

Given that M has type 3x.4, a proof term let (x,w) = M in N decides the type of N after binding
x and w to a witness ¢ and a proof term of type [t/x]A, respectively. (Note that x is a term variable
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w: [a/x]A

M fofalA | Mived o Miljdd _ M:3mA leflN:C_

Ax. M :Vx.A Mt:[t/z]A (t,M):3z.A let (x,w) =M inN:C

Figure 5.3: Typing rules for proof terms in first-order logic

whereas w is a variable ranging over proof terms.) Since such a witness is unknown in general (e.., if
M is a variable), we have to assume an arbitrary witness a and assign type [a/z]A to w. Accordingly
we replace x in IV by a. Thus we obtain the following typing rule for let (x,w) = M in N:

w: [a/x]A

M:3z.A  |a/z]N:C
let (z,w)=MinN:C

JE

In practice, we may use the following typing rule with an extra assumption that z is a fresh term vari-
able:

w:A

M:3z2z.A N:C
let (x,w) =M inN :C E

Figure 5.3 shows all the typing rules for proof terms in first-order logic.
Exercise 5.3. Rewrite these typing rules using hypothetical judgments.

We derive f-reductions and n-expansions for universal and existential quantifications from their
corresponding local reductions and expansions of proofs given in Section 5.5. For universal quantifica-
tions, we assign proof terms as follows:

[a/x]M : [a/z]A "
Ax. M V. A vE 0 [t/alla/x]M : [t/a]la/z]A
(Ax. M) t:[t/z]A
M :Vz.A VE
M:ve A =y —Afjéfia/jiAA VI*  where M a = [a/z](M x)

As we have [t/a][a/z]M = [t/a]M (and [t/a][a/x]A = [t/x]A), we obtain the following S-reduction and
n-expansion:

Ae. M)t =3 [t/z]| M

M :Vz.A =, Ar. Mz (x is not free in M)

For existential quantifications, we assign proof terms as follows:

w: fa/eld M /wlit/alw : [t/a)[a/x]A
M :[t/z]A o : —
(t, M) :3z.A [a/z]N : C o w a‘a LN -
et (rw) = LM)inN:C Mplltfellaf N
w: [a/x]A o
M:3z.A =, M:3z.A (a,w):3Jx.A

let (z,w) = M in {(z,w) : Jz.A 3E*  where (a,w) = [a/x](z,w)
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As we have [M/w][t/a][a/x]N = [M/w][t/x] N, we obtain the following 3-reduction and n-expansion:

let (x,w) = (¢, M) in N =3 [M/w][t/z]N
M :3x.A =, let (x,w) = M in (z,w)
As in Section 3.4, we extend the definition of elim terms and intro terms by using an elim term £

to represent a proof of A| and an intro term I to represent a proof of AT. According to the rules for
deducing neutral and normal judgments given in Section 5.5, we obtain the following definition:

elim term E = - |Et
intro term I == - | Xe.l| (1) ]|let{z,w)y=FEinI

The commuting conversion for existential quantification requires us to extend the definition of com-
muting conversion contexts explained in Section 3.4 and introduce another case for M =, N as shown
below:

commuting conversion context k u= - |Ot]|let(z,w)=0inT

kllet (z,w) =M in N] = let{(z,w)= M ink[N]
5.8 Examples of proof terms

This section rewrites all the proofs in Section 5.6 using proof terms. First we need constant proof terms
for axioms:

Nato : Nat(0) 2¢°  Nat, : Va.Nat(z) > Nat(s(z)) >

Eq;

Y E
Eqi : Vo.Eq(z, x) gi : Ve.Vy Vz.(Eq(x,y) A Eq(z,2)) D Eq(y, 2) o

Lt

Lt
Lt : Va.Lt(z,s(z)) ~° Lt- : Va.Vy.Eq(z,y) D —Lt(z,y)

The proof of Nat(s(s(0))) true corresponds to a proof term Nats s(0) (Nats 0 Natg) as shown in the
following derivation tree:

g ats : V. Nat(z) D Nat(s(x)) Succ 7
Nats : V. Nat(z) D Nat(s(z)) uee Nats O : Nat(0) D Nat(s(0)) E Nato : Nat(0) Em
Nats s(0) : Nat(s(0)) D Nat(s(s(0))) Nats O Natg : Nat(s(0)) £ -
Nats s(0) (Nat, 0 Nato) : Nat(s(s(0))) -
In the same fashion, we obtain the following proof terms:
e Proof term of type Va.Nat(x) D (Jy.Nat(y) A Eq(z,y)):
- E
Eqi : Va.Eq(x, )
z: Nat(a) Eqia: Eq(a,a)
(2,Eqi a) : Nat(a) A Eq(a,a) -
(a, (z,Eqi a)) : y.Nat(y) A Eq(a,y) o
Az:Nat(a). {(a,(z,Eq; a)) : Nat(a) D (Jy.Nat(y) A Eq(a,y)) o
Az. Az: Nat(x). (x, (z,Eqi z)) : Vo.Nat(z) D (y.Nat(y) A Eq(z,y)) v
e Proof term of type Va.Vy.Eq(z,y) D Eq(y, x):
E
Eqe : Va.Vy.Vz.(Bq(a,y) A Bq(z,2)) O Ba(y,2) B
Eqe a : Vy.Vz.(Eq(a,y) A Eq(a,2)) D Eq(y, z) Eqi : Va.Eq(z, x)
Eqi a b: Vz.(Eq(a,b) A Eq(a,z)) D Eq(b, z) w: Eq(a,b) Eqgia: Eq(a,a)
Eqi aba: (Eq(a,b) A Eq(a,a)) D Eq(b,a) (w,Eq; a) : Eq(a,b) A Eq(a,a) /\E
D

Eqi aba (w,Eqia) : Eq(b,a)
Aw: FEq(a,b).Eqr aba (w,Eq; a) : Eq(a,b) D Eq(b,a)
Ay. \w:Eq(a,y). Eqr a y a (w, Eq; a) : Vy.Eq(a,y) D Eq(y, a)
Az Ay  w: Eq(z,y). Eqy x y = (w, Eq; z) : Va.Vy.Eq(x,y) D Eq(y, )

) b

vI¢

72 September 3, 2009



e Proof term of type ~3z.Eq(x,0) A Eq(z,s(0)):

L,
£ Lts : V. Lt(z,s(x)) i

(Lt- 0s(0)) (Eq: a 0s(0) z) : =Lt(0,s(0)) Lt 0: Lt(0,s(0))
w : Jx.Eq(x,0) A Eq(x,s(0)) (Lt~ 05(0)) (Eqe a0s(0) 2) (Lts 0) : L _ B
let (x, z) = win (Lt- 0s(0)) (Eq: z 0 s(0) 2) (Lts 0) : L w
Aw:3z.Eq(z,0) A Eq(z,s(0)).let (z,z) = win (Lt 0s(0)) (Eg: z 0 s(0) z) (Lts 0) : =3z.Eq(z, 0) A Eq(z,s(0)) -

where we let

Lt
Lt- : Va.Vy.Eq(z,y) D - Lt(x,y)

& - Lt- 0: Vy.Eq(0,y) D —Lt(0,y) D
Lt- 0s(0) : Eq(0,s(0)) D —Lt(0,s(0)) Eq: a 0s(0) 2z : Eq(0,s(0)) E
(Lt~ 05(0)) (Eqr a 05(0) 2) : =L£(0,(0)) -

where we let

E
Eq: : Va.Vy.Vz.(Eq(z,y) A Eq(z,2)) D Eq(y, 2) @

Eqr a : Vy.Vz.(Eq(a,y) A Eq(a, 2)) D Eq(y, 2)

D = Eq: ¢ 0 : Vz.(Eq(a,0) A Eq(a,z)) D Eq(0, z) VE £
Eqt a 0s(0) : (Eq(a, 0) A Eq(a,s(0))) D Eq(0,s(0)) z : Eq(a, 0) A Eq(a,s(0)) E
Eqg: a 0s(0) z : Fq(0,s(0))
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Chapter 6

Datatypes

In pure first-order logic, term variables are assumed to range over all kinds of terms and their domains
are left unspecified. Hence we can restrict the domain of a term variable only indirectly by using a
predicate corresponding to a particular domain. For example, we may use a predicate Nat(x) to specify
that = ranges over natural numbers, as in:

Vz.Nat(z) D A
Jz.Nat(z) AN A

This chapter develops first-order logic with datatypes which explicitly specifies the domain of each
term variable bound by a quantifier V or 3. We write V2 € 7.A and Jz € 7. A to specify that term variable x
in proposition A ranges over datatype 7. For example, the above two propositions can now be concisely

written as
Vzenat.A

Jdrenat. A

where nat is a datatype for natural numbers.
The main judgment for first-order logic with datatypesis ¢ € 7:

ter & termt has datatype T

As in propositional logic and pure first-order logic, we base the development of datatypes on natural
deduction. For example, each datatype 7 is accompanied by introduction and elimination rules for
deducing and exploiting judgments ¢t € 7. We use metavariables 7 and o for datatypes, and ¢ and s for
terms.

From this chapter on, we adopt a new notation A(z) to mean that proposition A contains term vari-
able z, as in Vz € nat.A(x) and 3z € nat.A(z). Accordingly A(t) stands for A in which every occurrence
of x has been replaced by ¢. That is, we have A(t) = [t/z]A.

6.1 Basic constructors for datatypes

Before we consider concrete datatypes such as bool for boolean values and nat for natural numbers,
we develop basic constructors for datatypes to obtain a general language similar to the simply-typed
A-calculus:

datatype 7 u= --- |T7—7 |7 X7 |7+7 | unit|void

We call 7 — o a function type, 7 X ¢ a product type, 7+0c a sum type, unit a unit type, and void a void
type. We will use terms of these datatypes as programs for manipulating ordinary terms of such con-
crete datatypes. For example, we use a term of datatype nat— bool as a function mapping natural
numbers to boolean values, and a term of datatype nat x nat to carry a pair of natural numbers. We
assume that —, x,+ are all right-associative.

The basic constructors for datatypes have their counterparts in the simply-typed A-calculus as fol-
lows:

datatype | — x + unit void
type > AN VvV T 4
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teo

teET—0 SET E teT s€o teTXxXo E teTxXo <E
A ET.tET—OT tseo “F (t,s)eTxo fstter Y sndteo TR
TET yert
ter teo terT+7  s€o seo
inl, tet+o inr,teTVo casetof inlz.s|inry.s' € o
. t € void .
~——— unitl ————
() € unit UMt abort, te 7 voidE

Figure 6.1: Typing rules for terms

For example, function types of the form 7 — ¢ correspond to types of the form A > B. Terms for these
datatypes also have their counterparts in the simply-typed A-calculus. For example, as we use a A-
abstraction Az : A. M as a proof term of type A D B, we use another form of A-abstraction Az € 7.t as a
term of datatype 7 — . The definition of terms reuses the syntax for proof terms in the simply-typed
A-calculus with a few cosmetic changes:

A ert|tt|(tt)|fstt|sndt|inl, ¢t |inr, ¢t |casetof inlz.t |inr .t |
() | abort. t

term t =

Figure 6.1 shows the typing rules for terms, all of which are obtained in an analogous way to the
typing rules for the simply-typed A-calculus in Figure 3.1. We may also rewrite these typing rules using
hypothetical judgments of the form I' - ¢ € o where typing context I' denotes a collection of datatype
bindings of the form « € 7, as in Figure 3.2.

Since the typing rules are all based on the principle of natural deduction, we obtain 3-reductions
and n-expansions of terms in the same way that we obtain those for the simply-typed A-calculus:

(Arert)s =3 |[s/x]t
fst (t,S) =5 t
snd (t,s) =3 s
caseinl, tof inlx.s |inry. s =5 [t/x]s
caseinr, tof inlz.s |inry.s =53 [t/y]s
tetT—o =, MET.tT (x is not free in t)
teTxo =, (fstt,sndt)
tet+o0 =, casetofinlz.inl, z|inry.inr, y
teuit =, ()
t€void =, abort,t

Here [s/z]t, similar to [N/x] M, denotes a capture-avoiding substitution of s for z in ¢t. With §-reductions
and n-expansions available, these terms constitute a general language of their own.

6.2 Natural deduction for datatypes

We now consider two concrete datatypes bool for boolean values and nat for natural numbers. Again
we explain the meaning of judgments ¢ € bool and ¢ € nat using the principle of natural deduction. For
example, an introduction rule for bool specifies how to deduce a new judgment ¢ € bool whereas an
elimination rule for bool specifies how to exploit an existing judgment ¢ € bool. Usually we first design
introduction rules according to the intuition behind a given datatype and then derive elimination rules
from these introduction rules. In fact, elimination rules for a datatype can be automatically derived
from its introduction rules as long as terms of the datatype are defined inductively.
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Let us consider datatype bool for boolean values:
datatype 7 == --- |bool

As a boolean value allows us to choose one of two different options, we associate with datatype bool
two terms, true and false, indicating which option to choose:

booll; booll¢

true € bool false € bool

Suppose now that we have a judgment ¢ € bool that we wish to exploit in deducing another judgment.
Since it is in general unknown whether ¢ is equivalent to true or false, we provide for both possibilities
using a term matching ¢ with true and false in turn:

tebool t1€7 thEeT
caset of true = t; | false =t € 7

boolE

Note that although the rule boolE eliminates a term of datatype bool, the term in its conclusion may
have a different datatype 7.

We choose to abbreviate case ¢ of true = t; | false = t, as if t then t; else t5 familiar from
programming languages. Thus we obtain the following definition of terms for datatype bool:

term ¢ = ... |true|false|if ¢t thentelset

Local reductions and expansions of proofs (which we omit) are translated to the following (-reductions
and n-expansion for datatype bool:

if true then t; else ¢, =3 t1
if false then t; else 5 =3 to
t € bool =, if ¢t then true else false

Here are a few examples of functions manipulating boolean values. and and or compute the logical
conjunction and disjunction, respectively, of two boolean values. not computes the logical negation of
a boolean value.

and € bool— bool— bool and = Az € bool. A\y € bool.if x then y else false
or € bool— bool— bool or = Ax € bool. A\y € bool.if z then true else y
not € bool— bool not = Ax € bool.if x then false else true

Exercise 6.1. Instead of defining it as a new datatype, we can simulate bool as unit+unit. Then how do
we simulate true, false, and if ¢ then ¢; else t5?

Datatype nat defines a natural number as either zero 0 or a successor s(t) of another natural number

datatype 7 == ---|nat

t € nat

————— natl
s(t) € nat natls

0 € nat natlo

The elimination rule is similar to the rule boolE and considers two cases for a given term ¢ of datatype
nat: when ¢ matches zero and when ¢t matches a successor of another natural number. The difference is
that in the second case, the elimination rule binds a term variable, say z, to the predecessor of ¢ which
is unknown in general. Thus the elimination rule for datatype nat uses a hypothesis of = € nat:

T € nat

tenat toeT ts €T

E
casetof 0 =ty | s(z) = ts €7 nat

Here x is a local term variable whose scope is restricted to ¢,, and we may rename it whenever necessary.
Thus we obtain the following definition of terms for datatype nat:

term ¢t = ---]0]|s(t)|casetof 0 =t |s(x)=1
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A local reduction for datatype nat takes a proof in which the introduction rule natlg or natls is imme-
diately followed by the elimination rule natE:

T € nat
&
- £ : —R
0 ¢ nat "2tlo toeT tseT toer
natE
case 0of 0 =ty |s(z) =>ts €7
T € nat D
D t € nat
_tenat natly, €& ) =R :
s(t) € nat to €T ts €T :
natE [t/z]ts € T

cases(t)of 0 =ty |s(z) =t €T

From these local reductions, we obtain the following (-reductions for datatype nat:

case 0 of 0 = tp | s(x) = ts =5 to
cases(t) of 0 =ty | s(z) =t =3 [t/x]ts

A local expansion takes a proof of ¢ € nat and gives rise to the following n-expansion:
t € nat ==, casetof 0 = 0| s(z) = s(z)

Exercise 6.2. Show a local expansion of a proof of ¢t € nat.

Now we can define various functions returning different results depending on whether a given
natural number is zero or not. For example, we define a function returning the predecessor of a given
natural number as follows:

pred € nat— nat pred = Ax € nat.casez of 0= 0|s(y) =y

The extent to which we define such functions is limited, however, because we have no machinery for
defining recursive functions. For example, the following definition of a function doubling a given nat-
ural number is not valid because double in the body of the A-abstraction is a free term variable whose
definition is still incomplete:

double € nat— nat double = Az € nat.case z of 0 = 0 | s(y) = s(s(double y))

In the next section, we revise the rule natE so that we can define recursive functions over natural
numbers. Instead of a general form of recursion, we base the rule natE on primitive recursion which guar-
antees that every recursive call eventually terminates. Not every recursive function is definable with
primitive recursion (e.g., the Ackermann function), but in the study of first-order logic with datatypes,
we seldom need such recursive functions.

6.3 Primitive recursion

The revised rule natE based on primitive recursion is another elimination rule for datatype nat:

x€nat f(r)er

tenat toeT tSéT
rec f(t)of f(0) = to | f(s(x)) = ts €T

natE

We may think of rec f(t) of f(0) = to | f(s(z)) = t; as a primitive recursive function f applied to ¢. In
the base case where ¢ is 0, we take ¢;. Hence ¢, is not permitted to make a recursive call to f. In the
recursive case where ¢ matches s(z), we take ¢,. Inside ¢;, we use x to denote the predecessor of ¢t and
f(0) = to

f(s(z)) = ts
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It is important that ¢s may contain a recursive call to f, but only with z as its argument. For example,
such terms as f(pred x) and f(s(0))) are disallowed in ¢,. This syntactic restriction is the characteristic
feature of primitive recursion which prohibits an infinite sequence of recursive calls and thus guarantees
that a primitive recursive function always terminates regardless of its actual argument. Since every
recursive call to f within ¢, always takes x as its argument, we regard f(z) as not an application but a
term variable in itself.

Note that if ¢; contains no recursive call to f, the whole term rec f(t) of f(0) = to | f(s(z)) = ts
simplifies to case t of 0 = ¢¢ | s(x) = t,. Since the previous rule natE is a special case of the revised
rule natE, we revise the definition of terms for datatype nat as follows:

term ¢ = ---|0]|s(t)]|rec f(t)of f(0)=1t]| f(s(x)) =1
The (-reductions and n-expansion for datatype nat are given as follows:

rec f(0) of f(0) = 1o | f(s(z)) =ts =5  to
rec f(s(t)) of f(0) =to | f(s(x)) =t ==p  [rec f()of [(0) = 1o | f(s(x)) = ts/f(2)][t/x]ts
t € nat ==, rec f(t) of f(0) = 0] f(s(x)) = s(z)

In the first B-reduction, the left term reduces to ¢y because the argument to f is 0. In the second
B-reduction where the argument s(¢) matches s(z), we apply an equality = ¢ throughout ¢, by replac-
ing x by tand f(z) by a term denoting a call to f with an argument of ¢, namely rec f(¢) of f(0) = to | f(s(x)) = t..
The n-expansion does not involve a recursive call.

Now we can define a wide range of recursive functions. For example, we specify a function double
doubling a given natural number as follows:

double0 = 0
double s(x) s(s(double x))

The above specification translates to the following definition:

double € nat— nat
double = Az € nat.rec d(z) of d(0) = 0| d(s(y)) = s(s(d(y)))

The following sequence of 8-reductions (which are applied to subterms when necessary) shows that
double s(0) reduces to s(s(0)):

double s(0) =3 recd(s(0))of d(0) = 0| d(s(y)) = s(s
=3 s(s(rec d(0) of d(0) = 0| d(s(y)) = s(
=5 s(s(0))

As another example, we specify and define a function plus adding two natural numbers as follows:

plus0y = y
pluss(x)y = s(pluszy)

plus € nat— nat— nat
plus = Ax € nat. Ay € nat.rec p(z) of p(0) = y | p(s(z)) = s(p(z))

The following sequence of 3-reductions shows that s(0) and ¢ add to s(t):

pluss(0)t =3 (A\y € nat.rec p(s(0)) of p(0) = y | p(s(z)) = s(p(2))) t
=3 recp(s(0)) of p(0) = ¢ | p(s(z)) = s(p(z))
=5 s(recp(0) of p(0) =t | p(s(z)) = s(p(z)))
=5 s(t)

Alternatively we may define plus in such a way that it recurses over the first argument x before
taking the second argument y:

plus = Az € nat.rec p(z) of p(0) = Ay € nat.y | p(s(z)) = Ay € nat.s(p(z) y)
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In this case, the reduction of plus s(0) ¢ requires one more step:

p(0) = Ay € nat.y
pluss(0)t =3 <rec p(s(0)) of { p(s(2) = Ay € nat. s(p(2) y) ) t
) p(0) = \y € nat. y ) T
p(s(2)) = Ay € nat.s(p(2) y) )
0) = \y € nat.y ) )
s(z)) = Ay € nat.s(p(z) y)

=3 MyE€ nat.s((rec p(0) of

=3 s(|recp(0) of{

=53 s((A\y € nat.y) t)
= s(t)

Exercise 6.3. Design a function plus of datatype nat — nat — nat multiplying two natural numbers.

It is important to note that we have derived, as opposed to designed, the rule natE from the inductive
definition of terms for datatype nat. In general, once we design introduction rules for a datatype so
as to obtain an inductive definition of terms, the principle of primitive recursion determines a unique
elimination rule. Below we consider another example of a datatype in order to further elucidate the
process of deriving an elimination rule from introduction rules.

We use list 7 as a datatype for lists of terms of datatype 7:

datatype 7 u= .- |listT

We use nil” for an empty list of datatype list 7 and ¢ :: s for a list consisting of a head element ¢ and a

tail list s: i
listl, ter selistr

— - listl
nil” € list 7 ts€Elistr ¢

From these introduction rules, we derive the following elimination rule based on primitive recursion:

zer lelistt f(l)eo

telistt s, €0 Sc €T
rec f(t) of f(nil) = s, | f(zx 1) = s. €0

listE

The first branch, corresponding to the rule listl,, uses no term variable because nil” has no subterm.
In the second branch, we use two term variables x and [ because the rule listl. uses two terms in its
premise. As in the rule natE, we treat f(I) as a term variable. Thus we obtain the following definition
of terms for datatype list 7:

term ¢ = ... |nil" |t:t|rec f(t) of f(nil) =t | f(xa)=>t
The derivation of the 3-reductions and n-expansion is also similar to the case of datatype nat:

rec f(nil") of f(nil) = s, | f(x 2 1) = 5. =3 $n
rec f(t:t')of f(nil) = s, | f(z =) =s. =3 [rec f(t')of f(nil) = s, | f(z 1) = s./ D) /]t/]sc
telistt =, recf(t)of f(nil)=nil" | f(z )=z 1

As examples of recursive functions over lists, we define a function append concatenating two lists
and another function length calculating the length of a list:

append nil™ t = ¢
append (x :: 1)t = x:: (appendlt)

append € list T — list 7 — list 7
append = Ay € list 7. Az € list 7.rec f(y) of f(nil) = z | f(z 1) = z = f(I)

length nil™ = 0
length (x :1) = s(lengthl)

length € list T— nat
length = Ay € list 7.rec f(y) of f(nil) = 0| f(z :: 1) = s(f(]))
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Figure 6.2: Natural deduction system for first-order logic with datatypes

6.4 First-order logic with datatypes

So far, we have designed a system for creating terms and specifying their datatypes. As our study fo-
cuses on logic rather than programming languages, we are ultimately interested in proving properties
of terms rather than in manipulating terms. For example, the goal of designing a system for natu-
ral numbers is not to demonstrate how to multiply two natural numbers, but to formally prove such
properties as that every non-zero natural number is a product of two prime numbers.

In order to state, let alone prove, interesting properties of terms, we need appropriate predicates. For
example, we may need a predicate LT (m, n) to state that a natural number m is less than another natural
number n. We also need universal and existential quantifications so as to express that a property holds
for all terms of a specific datatype, or that there exists a certain term satisfying a given property. For
example, we may use Vz € nat. LT (x, s(z)) to state that for every natural number is less than its successor,
or 3z €nat. LT (z,s(0)) to state that there exists a natural number less than one. Then constructing proofs
of judgments Vz € nat. LT (z, s(z)) true and 3z € nat. LT (z,s(0)) true amounts to formally proving these
properties.

Before we investigate how to define predicates, we consider universal and existential quantifications
in the presence of datatypes. The development is similar to the case of pure first-order logic except that
we now specify the datatype for each term variable.

The inductive definition of propositions is extended as follows:

proposition A = ... |Vzer.A(z)|IreT.A(x)

The formation rules for Vo € 7.4 and 3z € 7. A use a hypothesis of z € 7:

reT reT
A(x) prop A(x) prop
Vet .A(z) prop JreT.A(x) prop

As we may freely rename z in Vz € 7.A(x) and 3z € 7.A(z) to a different term variable, we assume that
term variables declared in universal and existential quantifications are all distinct.

Figure 6.2 shows the inference rules for first-order logic with datatypes. These inference rules have
two important differences from those in pure first-order logic. First the rules VI and 3E no longer replace
a term variable x by a fresh parameter a as in [a/x]A true, but use a hypothesis of x € 7 specifying the
datatype for z. Second the rules VE and 3l require a separate judgment t € 7.

The rule VI resembles the rule Dl in that it uses a hypothesis whose scope is local to the premise.
The difference from the rule Dl is that the meaning of proposition A(z) in the premise is dependent on
the meaning of term variable « in the hypothesis. In contrast, in the rule DI for proving A O B true, the
meaning of proposition B is independent of the meaning of proposition A. Hence, if we collapse the
distinction between types and datatypes and use = € A instead of x : A, an implication A O B becomes
a special case of a universal quantification Vo € A.B where B contains no occurrence of z. Then the rule
DE also becomes a special case of the rule VE.
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Figure 6.3: Typing rules for proof terms in first-order logic with datatypes

Proof terms are the same as in pure first-order logic except that we use A-abstractions that explicitly
specify the datatype of term variables:

proofterm M = ---|dzeTr. M| Mt|{ M)|let(z,w)=MinM

Figure 6.3 shows the typing rules for these proof terms. The typing rules VI and VE show that it is no
coincidence that we use A-abstractions and A-applications as proofs terms for universal quantifications
as well as for implications, since implications are essentially a special case of universal quantifications.

Here are a few examples of proof terms whose types involve universal or existential quantifications:

e A proof term of type (Vxe7.A(x) A B(x)) D VeerT.A(z) is
Az:VreT. A(x) A B(z). Ax € T.fst (2 x).
Note that z is a variable whereas « is a term variable.
e A proof term of type (3zx €. A(z) V B(z)) D ((Fxer.A(z)) vV (IreT.B(z))) is

Az:JxeT.A(x) V B(x). let (z,w) = zin case w of inl y1.inl5, ¢ - Bz (2, y1) | inryo.inrsg e - A (2,92).

e A proof term of type ((Fz 7. A(z)) V 3z e7.B(x))) D (3re1.A(z) vV B(z)) is

Az:(FzeT.A(z)) V (FxeT.B(x)).
case z of inl y;. let (z,w) = y1 in (x,inlg) w) |inrys.let (z,w) = yz in (x,inr 40z w)

The B-reduction and n-expansion for universal quantifications

Aer. M)t =3 [t/x) M
M :Vxer.Alzx) =, AreT.Mx (x is not free in M)

are obtained as follows:

TET
: terT
M : A(x) =3 :
A € T.M :VzeT.A(x) vl ter [t/z)M : A(t)

Ower M) t:AQ) JE
M: Vet A z€T
M :Vxer A(z) =, Mz : Ax)
Ar €T Mz :Vrer. A(x)

VE
v

The (-reduction and n-expansion for existential quantifications

let (x,w) = (t, M) in N =3 [M/w][t/z]N
M :3Jzxer.A(x) ==, let (x,w) = M in (z,w)
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are obtained as follows:

reT w:A(x) _
fer M:A®) i} . ter [M/w]wA(t)
(t, M) :JzeT.Alx) N:C M /] [t'/x]N C
let (z,w) = (t, M)in N : C JE '

reT w:A(r)
M:3zerAx) = M:3zer.Ax) (z,w):IzeT.Az)
let (x,w) = M in (x,w) : JxeT.A

dl

6.5 Natural deduction for predicates

We now investigate how to define predicates on terms. As with all the logical connectives in first-order
logic, we base the definition of every predicate on the principle of natural deduction. That is, we use an
introduction rule to deduce a new judgment involving the predicate, and an elimination rule to exploit
an existing judgment involving the predicate. Moreover, as in the definition of such datatypes as bool
and nat, we first design introduction rules to characterize the predicate and then derive elimination rules
from these introduction rules.

As a running example, we define a predicate LT (m,n) to mean a natural number m is less than
another natural number n. We abbreviate LT (m,n) as m < n.

proposition A = .- |m<n
The formation rule for m < n requires both m and n to be of datatype nat:

m € nat n € nat
m < n prop

<F
By the rule <F, every judgment m < n true implicitly assumes that both m and n are of datatype nat.
We use the following introduction rules:

<1 m < n true
0 < s(n) true 0 s(m) < s(n) true

The rule <ly states that 0 is less than the successor of any natural number; the rule <l states that
proving s(m) < s(n) true reduces to proving m < n true. Now the two introduction rules determine a
unique meaning for < which is a comparison relation applicable to any pair of natural numbers. If we
choose to include the rule < Iy but omit <Is, we obtain a different but still valid meaning for < which is
a relation testing whether a given natural number is greater than zero or not. Thus the two introduction
rules provide just a specific way to characterize <, which can be defined in many different ways.

In order to derive elimination rules, we consider four possible cases of the judgment m < n true:

e 0 < 0 true is impossible to prove. The corresponding elimination rule may deduce any judgment
C true.

e s(m) < 0 true is impossible to prove. The corresponding elimination rule may deduce any judg-
ment C true.

e 0 < s(n) true holds trivially by the rule <l whose premise is empty. Hence there is no corre-
sponding elimination rule.

e s(m) < s(n) true holds by the rule <ls whose premise is m < n true. Thus the corresponding
elimination rule deduces m < n true.

We combine the first two cases to obtain a single elimination rule:

s(m) < s(n) true
m < n true

m < 0 true

C true <Bo
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Note that the rules <Is and <E,, which have < in both the conclusion and the premise, do not
destroy the orthogonality of the system because < is not a logical connective but a predicate. If < were
a logical connective, we lose the orthogonality of the system because we explain the meaning of < using
< itself.

Here are two examples of proofs using the rules for <:

—— m < 0 true
0 < s(0) true 1 true

s(0) < s(s(0)) true <l —(m < 0) true

<E0

IZ

We can also represent a proof of m < n true as a proof term of type m < n. Note that we refer to
m < n as a “type,” which is nothing strange because propositions and types are equivalent under the
Curry-Howard isomorphism. We use the following definition of proof terms each of which corresponds
to an inference rule as shown below:

proof term M = .- |ltly | Itls(M) | REo(M) | REs(M)
M:m<n M:m<o0 M :s(m) <s(n)
it -0 <s(n) ~° (M) :s(m) <s(n) ' HE(M):C “°  WE(M):im<n -
Here are proof terms of types s(0) < s(s(0)) and —(m < 0):
Zim<0
itly - 0 < 5(0) itEg(z) : L -0
<ls ol

Itls(Itlp) : s(0) < s(s(0)) Az:m < 0.1tEg(2) : =(m < 0)

As another example, we consider a predicate EQ(m,n) to mean that natural numbers m and n are
equal. We abbreviate EQ(m,n) as m =y n.

proposition A = --- |m=yn

m &€ nat n € nat
m =N 1 prop

Note that m =y n, which says that m and n represent the same natural number, is different from m = n,
which says that m and n are syntactically identical.
Similarly to the predicate m < n, we use two introduction rules:

m =N n true

—le

0 =n O true =nlo s(m) =n s(n) true
From these introduction rules, we derive the following elimination rules:

0 =y s(n) true s(m) =n 0 true s(m) =n s(n) true
C true —N=0s C true TNEs0 m =n n true

=NEs

There is no elimination rule for 0 =y 0 ¢rue because the premise of the rule =yl is empty.
We use the following definition of proof terms for the predicate m =y n:

proof term M = --- |eqlo | eqls(M) | eqEos(M) | eqEso(M) | eqEs(M)
il M:m=nn
eqlo:0=n0 MO eql(M) :s(m) =y s(n)

M:0=ys(n) M:s(m)=n0 E M :s(m) =y s(n)
eqEos(M):C V¥ TeqEo(M):C "0 eqE(M):m=nn

:le

:NEs

Now that we have a couple of predicates, we may attempt to prove interesting properties of natural
numbers in conjunction with universal and existential quantifications. For example, we may attempt to
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prove that for any natural number z, there exists a natural number y such that z < y, for example, by
choosing y = s(z). A formal proof of Vx € nat.3y € nat.z < y true, however, is not so simple:

z € nat 777
s(x) € nat * x < s(w) true
Jy€nat.x < y true
Vz €nat.dy €nat.x < y true

In fact, we cannot prove even such a simple judgment V € nat.z =y z. Intuitively we have to prove an
infinite number of judgments 0 =y 0, s(0) =n s(0), s(s(0)) =n s(s(0)), and so on, but we do not have a
mechanism by which we represent all these proofs as a single proof of finite size.

In the next section, we introduce yet another form of elimination rule for datatypes which provides
such a mechanism.

6.6 Induction on terms

Suppose that we wish to prove A(x) true for every boolean value xz. Since there are only two terms
true and false, it suffices to prove A(true) true and A(false) true separately, which is expressed in the
following elimination rule for datatype bool:
t € bool A(true) true A(false) true
A(t) true

boolE;

Note that unlike the previous elimination rule boolE which deduces only a judgment of the form s € 7,
the rule boolE; exploits a proof of ¢ € bool to deduce a judgment A(t) true where A(t) can be any propo-
sition involving ¢. Thus we have derived a new form of elimination rule which connects different forms
of judgments.

Now suppose that we wish to prove A(z) true for every natural number z. Since there are an infinite
sequence of natural numbers, a naive approach similar to the case of datatype bool would be clearly

infeasible:
t € nat A(0) true A(s(0)) true A(s(s(0))) true

A(t) true
Thus we are led to derive an elimination rule that allows mathematical induction on natural num-

bers inside a proof. Specifically it needs to show that A(0) true holds and that an induction hypothesis
A(z) true implies A(s(z)) true:

natE;

x € nat  A(x) true v

t € nat A(O) true A(s(x)) true
A(t) true

natE’;(‘r)

The second premise states that A(x) true holds for z = 0, and corresponds to the base case in mathe-
matical induction. The third premise states that a hypothesis of A(z) true (with label u(z)) leads to a
proof of A(s(z)) true, and corresponds to the inductive case in mathematical induction. Hence the sec-
ond and third premises constitute a valid proof of A(x) true for every natural number z. Note that the
first premise just provides a specific natural number ¢ which is to be substituted for z in A(z) true and
is thus not essential in completing a proof by mathematical induction. Often ¢ is just a term variable, in
which case it is called an induction variable.

Using the new elimination rule, we can now complete the proof of Vx € nat.3dy € nat.x < y true. In

the proof shown below, we use z as an induction variable and let A(z) = = < s(z) in the rule natE}‘(z) :

x < s(z) true )

- — <
Z € nat 0 2 cnat 0<s(0)true 0 s(z)<s(s(x)) true
s(z) € nat natls

<ls
x < s(z) true y

Jy€enat.x < y true
Vx €nat.dy €nat.x < y true
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Generalizing the case of datatype nat, we can derive from the definition of a datatype, or from its
introduction rules, an elimination rule that is based on induction on terms and builds inductive proofs
on terms. For example, the definition of datatype list 7 results in the following elimination rule:

. u(l
xeT lelistr A(l)true()

telistT A(nil") true A(z :: 1) true
A(t) true

IistE’IL(l)

We can also devise proof terms for the new elimination rules. For example, we use the following
proof term for the rule natE;:

proofterm M == .- |indu(t) of u(0) = M | u(s(z)) = N
x €nat  wu(x): A(z)

tenat M: A(0) N A(s(x)
ind u(t) of u(0) = M | u(s(z)) = N : A(t)

natE;

We can think of ind u(t) of u(0) = M | u(s(z)) = N as an inductive function u applied to t. If N does not
use u(z), it degenerates to a case analysis construct and may be written as case t of 0 = M | s(z) = N:

proofterm M = ---|casetof 0= M |s(z)= N
T € nat

tenat M:A0) N: A(s(x))
casetof 0 = M |s(x) = N : A(?)

natE;
As an example, here is a proof term of type Vz € nat.dy € nat.x < y:

u(z) : x < s(x)
T € nat . x €nat ltly: 0 < s(0) ltls(u(z)) : s(x) < s(s(x))
s(z) € nat * ind u(t) of u(0) = Itly | u(s(x)) = Itls(u(z)) : z < s(x)
(s(x),ind u(t) of u(0) = ltly | u(s(x)) = Itls(u(z))) : Jyenatx < y .
Az € nat. (s(z),ind u(t) of u(0) = Itly | u(s(z)) = ltls(u(x))) : Jy€nat.x <y : Vrenat.Iycnate <y

<ls
natE;

<lo

An elimination rule based on induction on terms gives rise to new S-reductions. For example,
an introduction rule natly or natls (proving ¢ € nat) followed by the elimination rule natE; (proving
A(t) true) forms a new pattern of detour, and removing such a detour corresponds to a S-reduction of
a term of type A(t). In the case of datatype nat, we obtain the following $-reductions:

ind u(0) of u(0) = M | u(s(z)) = N =3 M
ind u(s(t)) of u(0) = M | u(s(z)) = N =3 [ind u(t) of u(0) = M | u(s(x)) = N/u(z)][t/z]N

In the second g-reduction where s(t) matches s(x), we replace u(z) in N by a proof term of type A(t),
namely ind u(t) of u(0) = M | u(s(z)) = N.

Note that elimination rules based on induction on terms are irrelevant to n-expansions. For example,
an n-expansion of ¢ € nat must return another term of datatype nat, but the rule natE; yields a proof
term instead of a term. That is, the rule natE; eliminates a judgment ¢ € nat to produce an incompatible
judgment M : A(t).

86 September 3, 2009



6.7 Examples

We have seen in Section 6.5 that the introduction rules for a predicate specify a unique set of elimination
rules. For example, the introduction rules for the predicate m =y n

m =N n true

0 =n O true =nlo s(m) =n s(n) true TN
specify the following elimination rules:
0 =n s(n) true s(m) =n 0 true s(m) =n s(n) true
C true —N=0s C true TNEs0 m=nn true NS

We have also seen in Section 6.6 that the introduction rules for a datatype specify an elimination rule
based on induction on terms. For example, the introduction rules for datatype nat

t € nat

———— natl
s(t) €nat o

—— natl
0 € nat 0

specify the following elimination rule:

x €nat  A(z) true v

t € nat A(O) true A(s(x)) true
A(t) true

natE ()

Here we consider a few examples which use these rules to prove properties of natural numbers.

Example 1. Vz €nat.x =y

Ajudgment Vx € nat.x =\ x true states that every natural number is equal to itself. Note that the judg-
ment does not hold trivially because =y is not a syntactic equality relation but a notational abbreviation
of a predicate symbol EQ such that EQ(m,n) means m =y n. That is, there is no reason that z =y «
should hold just because we intend =y as an equality relation between natural numbers.

We begin with an inductive proof of x =y z true where x is assumed to be an arbitrary natural
number:

Proof. By induction on x.

Base case x = 0:
0 =N O true from o =N 0 true =nlo

Inductive case = = s(2’):
' =n & true by induction hypothesis
2/ =N 2 true

!/ / =
s(z’) =n s(a’) true from (') = s(@) true N
O

From this inductive proof, we obtain a derivation tree for the judgment Vx € nat.x =n « true:

—u(a’)
' =N 2 true

=nlo =Nls

x €nat 0=y O true s(z’) =n s(a’) true
T =N T true
Vx €nat.x =N x true

u(z')

natk;
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Then we obtain a proof term of type Vz €nat.x =y x by assigning a proof term to every part of the
derivation tree:

Ly u(z') 2’ =y o o
TEnat edlg:0—y0 M eql(u(@)):s(@) =y s(-r’) )
ind u(z) of u(0) = eqly | u(s(a’)) = eqls(u(z’)) : x = natk;

Az € nat.ind u(z) of u(0) = eqly | u(s(z’)) = eqls(u(2’)) : Vmenat T=NT vl

An equivalent but easier way to obtain such a proof term is to begin with its specification. For
example, we can derive a proof term eqNat of type V € nat.x =y x from the specification that eqNat x
returns a proof term of type =y :

x proof term of type x =y x
eqNat 0 = eqlg
eqNat s(z’) = eqls(egNat z')

Note that egNat may be recursively called only with argument 2, just like a primitive recursive function
applied to s(z’) may be recursively called only with argument z’. Then we introduce an inductive
function v and rewrite the specification into the definition of eqgNat where egNat x’ changes to u(z’):

eqNat = Az € nat.ind u(x) of u(0) = eqly | u(s(z')) = eqls(u(z’))

Example 2. Vz€nat.VyenatVzenatr =y y Dy =n2 D2 =N 2

A judgment Vzenat.Vyenat.Vzenat.x =y y D y =N 2 D & =n 2 true expresses the transitivity of the
equality relation =n. An inductive proof of x =n y D y =n 2z D & =n 2 true is given as follows:

Proof. By induction on z. We consider subcases on y and z. In each case, we assume z =y y true and
y =N 2z true to show x =y z true.

Base case z = 0. We need to show 0 =y y D y =N 2 D 0 =y z true:

Subcase y = 0:
Subcase z = 0. We need to show 0 =y 0 true.
0 =y O true by the rule =ylg
Subcase z = s(z’). We need to show 0 =y s(z’) true.
0 = s(2’) true from the assumption y =y z true
Subcase y = s(y’). We need to show 0 =y z true.
0 =n s(y') true from the assumption x =y y true
0 =y z true from % =nEos
Inductive case z = s(z’). We need to show s(z’) =y y D y =n 2z D s(z’) =n 2 true:
' =ny Dy =n 7 Da’ =y 7 trueforany y’ and 2’ by induction hypothesis
Subcase y = 0. We need to show s(z') =y z true.
s(z’) =n 0 true from the assumption « =y y true
s(z’) =n 0 true
S(l‘/) =n 2 true from =nEso

s(z’) =n z true
Subcase y = s(y’):
Subcase z = 0. We need to show s(z’) =y 0 true.
s(y’) =n O true from the assumption y =y z true
s(y’) =n 0 true

)=n0t from =nE
s(z’) =n O true S(@) = 0 frue NE®
Subcase z = s(z’). We need to show s(z’) = s(2’) true:
s(z') =n s(y') true from the assumption « =y y true
s(z') =n s(y) true
7 =n v true from ; - =nEs
x =Ny true
s(y') =n s(z') true from the assumption y =y z true
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s(y') =n s(z') true

—NLs

y' =N 2 true from —
Yy =N 2’ true

z' =N 2 true
f ! / ! / ! / ! / ! /
roma’ =Ny DY =N2 DT =Nz lrue, 2" =Ny lrue,y =N 2 lrue
z' =N 2 true

N =l
s(z’) =n s(2’) true from s(z') =y s(2') true  "°
O

Instead of rewriting the inductive proof as a derivation tree and then obtaining a corresponding
proof term (which is tedious), we obtain a proof term trans directly from its specification:

x y z VT =NY w:Y =N 2 proof term of type z =y 2
trans O 0 0 v:0=N0 w:0=n0 = eqglporvorw
trans 0 0 s(z)) v:0=N0 w: 0=y s(z) = w or eqEgs(w)
trans 0 s(y) =z v:0=ys(y) w:s(y) =Nz = eqEgs(v)
trans s(z’) 0 z v:s(z')=n0 w:0 =2z = eqEy(v)
trans s(z’) s(y’) O ves(z')=ns(y) w:sy)=n0 = eqEg(w)
trans  s(z’) s(y') s(2) v:s(@)=ns(y) w:s(y)=ns(z') = eqls(trans 2’ y' 2’ eqEs(v) eqEs(w))

It requires a bit of thinking to obtain a correct definition of trans. For example, here is a wrong
definition of trans in which we mistakenly apply induction on « after taking y and z:

Az € nat. \y € nat. Az € nat.

0= v:0=N0.)\w:0=y0.eqly

s(2') = M:0 =y 0. \w:0 =y s(2'). eqEps(w)
s(y') = A:0 =y s(y'). \w:s(y') =n z.eqEes(v)

ind u(x) of 0= Av:s(z') =N 0. \w:0 =y z.eqEs(v)

u(0) = case y of 0 = case z of

/
u(s(z)) = case y of s(y') = case z of ¢ s(2') = Av:s(a’) =ns(y). dw:

s(y) =n s(2').
eqls(u(z’) v’ 2’ eqEs(v)

)
qEs(w))

This definition is wrong because u(z')y’ 2z’ eqEs(v) eqEs(w) fails to typecheck: wu(z’) has type
¥ =Ny Dy =nzDa’ =y z butitisapplied to two terms 3’ and 2’ instead of two proof terms of types
x' =y y and y = z. Neither does dropping 3’ and 2’ help because eqEs(v) and eqEs(w) have different
types 2’ =y 3’ and y' =n 7/, respectively. The problem in this definition is that y and = are already fixed
when induction on z starts, leaving no chance to use u(z’) to build a proof term of type o’ =y 2’ true
from proof terms of types #' =y v’ and y’ = z’. Thus a correct definition of proof term trans starts
induction on z before taking y and z as arguments:

Az € nat.
u(0) = Ay € nat. Az € nat.
0= A v:0=N0.\w:0=y 0.eqly
case y of 0 = case z of s(z') = Av:0 =N 0. \w:0 =y s(2'). eqEgs(w)
s(y') = M:0 =y s(y'). Aw:s(y’) =n z.eqEgs(v)
ind u(z) of ¢ wu(s(z')) = Ay € nat. \z € nat.
0= \v:s(z') =y 0. \w:0 =y z.eqEs(v)
0= Mv:s(z') =ns(y). \w:s(y’) =n 0.eqEq

s(y') = case z of { s(2') = Mv:s(2’) =ns(y). \w:s(y') =

case y of
s(y') S
eqls(u(a’) y' 2’ eqEs(v) eqEs(w))

In this definition, u(x) has type Vy€nat.Vzenat.x’ =y y Dy =n 2z D 2’ =n 2z, allowing us to build a
ypP &
proof term of type ' =y 2’ true from proof terms of types 2’ =y 3’ and y’ =y 2'.

Example 3. Vz €nat.—(x =y 0) D Jy€nat.s(y) =y

A judgment Vz € nat.~(z =y 0) D Jy€nat.s(y) =n x true states that every non-zero natural number is
the successor of some natural number. A proof of —(z =y 0) D Jy €nat.s(y) =n x true, which is not an
inductive proof but reuses the proof of Vz € nat.z = z true, is given as follows:
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Proof. By case analysis of x.

Case z = 0. We need to show —(0 =y 0) D Jy€nat.s(y) =n O:
—(0 =N 0) true assumption

Jy enat.s(y) =n O true from —(0 =y 0) true and ¢ =y 0 true =nlo

Case z = s(z’). We need to show —(s(z’) =y 0) D Jy€nat.s(y) =n s(z’):

—(s(z’) =n 0) true assumption (which is not used in this case)

x' =n 2’ true from the proof of Vz € nat.z =y z true and z’ € nat
' =y 2’ true

s(z) =n s(a’) true from N =nle

s(z') =n s(a’) true
' € nat s(z') =N x true

3 t. = )t f
yenats(y) =n s(z’) true rom Jy€nat.s(y) =N @ true

O
The specification of a proof term pred of type Vz €nat.—(x =y 0) D JyEnat.s(y) =y z is:

x v:=(z =y 0) proof term of type Jy € nat.s(y) =n «
pred 0 v:—=(0=N0) = abortsy c nat.s(y)=yo (v €qlo)
pred s(z') wv:=(s(z’)=n0) = (2/,eqls(eqNat 2'))

From this specification, we obtain the following definition of pred:

_ 0 = Av:—(0 =y 0). abortsy, ¢ nat.s(y)=yo (v €qlo)
pred = Az € nat. case z of { s(z') = Av:=(s(z') =y 0). (', eqls(eqNat o))

Exercise 6.4. Can you give a definition of pred of the following form?

0= ..
pred = Az € nat. \w:—(z =y 0). case x of { s(z') = ...

Exercise 6.5. Give a proof of Vz € nat.Vy €nat.x =y y D y =N = true. What is its proof term?

Exercise 6.6. Give a proof of Vz € nat.Vy €nat.x < y D —(x =y y) true. What is its proof term?

6.8 Induction on predicates

In Section 6.5, we have seen how to derive a set of elimination rules for a predicate from its introduction
rules. For example, the introduction rules =ylp and =nls for the predicate m =y n specify the elimi-
nation rules =nEgs, =nEso, and =nEs. Now we show how to derive yet another elimination rule from
the introduction rules for a predicate. Such an elimination rule is based on induction on predicates and
allows us to prove properties of terms satisfying certain predicates.

Suppose that we wish to show a property that whenever mg =n ng true holds, we have a proof of
A(mg,no) where A(mg,no) can be any proposition involving terms mg and ng. For example, we may
have A(mg,ng) = ng =N mo, in which case we attempt to prove the judgment in Exercise 6.5. We
consider two cases of building a proof of mg =n ng true:

e The proof of mo =N ng true uses the rule =ylg. In this case, we have my = 0 and ng = 0, and thus
need to prove A(0, 0) true.

e The proof of mg =N ng true uses the rule =yls. In this case, we have my = s(m) and ng = s(n),
and thus need to prove A(s(m),s(n)) true from the assumption of m =y n true. In addition, the
principle of induction allows us to make another assumption of A(m,n) true because according
to the rule =yls, m =y n true uses a “smaller” predicate than s(m) =y s(n) true and is assumed
to already satisfy the property.

90 September 3, 2009



The analysis in these two cases justifies the following elimination rule:

u(m,n)

meEnat nenat m=yn" A(m,n) true

mo =N no true  A(0,0) true A(s(m),s(n)) true

A(mg, ng) true

:NE}u,u(m,n)

Note that as is the case for induction on terms, the second and third premises do not use my and ng
at all and constitute a valid proof of A(m,n) true for every pair of natural numbers m and n. Thus
the first premise just provides two specific natural number mg and ng to be substituted for m and n in
A(m,n) true and are not essential in completing a proof by induction on predicates.

As an example of using the rule =yEj, here is a proof of the judgment in Exercise 6.5 where we let
A(m,n) =n =y m:

—  u(m,n)
n =N m true

=Nls
Ew,u(m,n)

=nlo s(n) =n s(m) true

T=NY true . 0 =n O true
Yy =N T true

T=NYDY=NZTlrue

VyEnat.e =N y Dy =N  true

VrxenatVyenatex =y y Dy =N T true

w

ol

In a similar way, the introduction rules for the predicate m < n specify the following elimination
rule based on induction on predicates:

u(m,n)

n € nat menat nenat m<n. A(m,n) true

mo < ng true A(O,s(ﬁ)) true A(s(m),s'(n)) true

u(m,n)

w,
A(mg, no) true <E

We can now simplify the proof of the judgment in Exercise 6.6 by using the rule < E; with A(m,n) =
—(m =nn):

s(m) =n s(n) true ‘

—_— v —— X u(m,n) =N
0 = s(n) true —(m =N n) true m =N n true °
1 true —N lvos 1 true v B
—_—w - —
x<ytrue  —(0=ys(n)) true —(s(m) =n s(n)) true )
I

—(z =N y) true w

r<yD-(x=Ny) true

Yyenat.x <y D ~(x =N y) true

Va €nat.Vy€nat.x <y D —~(x =y y) true

6.9 Definitional equality

So far, we have seen how to use predicates on terms to prove various properties of datatypes. Inciden-
tally these terms are not further reducible by S-reductions because they are either variables or built only
by introduction rules, as in 0 =y 0, z =y y, and s(z) =n s(y). Now we consider predicates containing
terms that may reduce to simpler terms by g-reductions. For example, a predicate plus 0 0 =y 0 con-
tains a term plus 0 0 which reduces to 0 by 8-reductions. Note that plus 0 0 =y 0 true is not provable
because the introduction rules =ylg and =l allow us to prove judgments of the form 0 =y 0 true and
s(m) =n s(n) true only. Since plus 0 0 and 0 denote the same natural number, we would like to be able
to prove plus 0 0 =y O true.

This section develops a methodology that enables us to prove such judgments as plus 0 0 =y O true.
The basic idea is to define a notion of equality =, called definitional equality, which identifies two terms
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that reduce to the same term by §-reductions. For example, we have an equality plus 0 0 = 0 because
plus 0 0 reduces to 0 by 3-reductions. Then the equality plus 0 0 = 0 allows us to simplify the judgment
plus 00 =y O true to 0 =y O true, which is provable.

It is important that although definitional equality uses the symbol = which usually stands for syn-
tactic equality, it is a strict extension of syntactic equality. For example, 0 = 0 holds under both syntactic
equality (because x is syntactically equal to x) and definitional equality (because x reduces to x by zero
B-reductions), but plus 0 0 = 0 does not hold under syntactic equality (because plus 0 0 is syntactically
different from 0) while it holds under definitional equality. We also note that definitional equality has
nothing to do with the symbol =y in the predicate m =y n which is just a syntactic abbreviation of
EQ(m,n).

Formally we use a new judgment ¢ = s to mean that terms ¢ and s are definitionally equal. (Instead
of writing ¢t = s true, we write t = s, omitting true.) As with predicates, we base the definition of ¢t = s
on the principle of natural deduction:

t=pjr s=5T A(t) true t:stEE
DefEql A(s) true Ea

t=s

In the introduction rule DefEql, the judgment ¢t =7 r means that ¢ reduces to r by zero or more
B-reductions. Here we assume that 3-reductions may be applied to subterms of the term being reduced.
For example, if t; = t5 holds, s(t1) =} s(t2) holds because ¢; is a subterm of s(¢1). Thus the rule
DefEql states that two terms are definitionally equal if both reduce to the same term by 3-reductions.
As a special case, two terms ¢ and s are definitionally equal if ¢ reduces to s by S-reductions or vice
versa.

° Ift:%sors:% t,thent = s.

The elimination rule DefEqE states that once we build a proof of t = s, we cease to distinguish between
(syntactically different) propositions A(t) and A(s). The corresponding typing rule allows us to change
the type of a proof term silently without changing the proof term itself:

M:Alt) t=s

M - A(s) DefEqE

According to the rule DefEql, definitional equality is a relation between terms which is reflexive and
commutative:

e ¢ =t holds for any term ¢.

e ¢t = simplies s = ¢.

Definitional equality is not necessarily transitive because the set of terms is open-ended and thus can be
extended with new terms that destroy the transitivity of definitional equality. It is transitive, however,
in the following weak sense:

o Ift = sand s = r, then A(t) true implies A(r) true.

Here are a few examples of definitional equality:

e pred 0 = 0 holds because we have pred 0 =3 case 0 of 0 = 0 | s(y) = y =3 0.
e The sequence of 3-reductions on Page 79 proves plus s(0) t = s(t).

e plus 0 x = x holds:

plus0x =3 (Ay € nat.rec p(0) of p(0) = y | p(s(2)) = s(p(2))) =
=p recp(0) of p(0) = x| p(s(2)) = s(p(z))
3 Z

e plus x 0 = x does not holds:

plusx 0 =3 (Ay € nat.rec p(z) of p(0) = y | p(s(z)) = s(p(2))) O
=3 recp(z)of p(0) = 0 | p(s(2)) = s(p(z))
=5 7
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As an example of a proof using definitional equality, let us find a proof term of the following type
which states that every natural number is either even or odd:

Vzenat.(Jyenat.y+y =y z) V (Jye€nats(y +y) =n )

Here we write t + s for plus ¢t s. Note that without definitional equality, it is impossible to find such a
proof term because there is no way to prove, for example, y + y =n =.
First we observe that s(x) + y = s(z + y) holds:

s(r) +y =3 recp(s(z))of p(0) =y |p(s(z)) = s(p(2))
=5 s(recp(z)of p(0) = y | p(s(2)) = s(p(2)))
s(r+y) =4 s(recp(z)of p(0)=y|p(s(z)) = s(p(z)))

Next we define a proof term comp whose type is Vo € nat.Yy €nat.z + s(y) =n s(z + y):

u(0) = egNat s(y)
u(s(z')) = eqls(u(z’))

Here egNat s(y) is assigned type 0 + s(y) =n s(0 + y) which is equivalent to s(y) =n s(y) under defi-
nitional equality. Similarly eqls(u(z)) is assigned type s(z’) + s(y) =n s(s(z’) + y) which is equivalent
to s(z’ 4+ s(y)) =n s(s(2’ + y)) under definitional equality. Then we use the proof term trans given in
Section 6.7 to obtain a proof term of the given type:

comp = Az € nat. \y € nat.ind u(x) of {

Ax € nat.

ind u(z) of u(0) = inl3y ¢ nat.s(y+y)=vo (0,eqlo)
u(s(z')) =

case u(az’) of inl z. let < Y, > =zin inrﬂyénat.y+y=Ns(a¢’) <y7eq|s(w)>
| inrz.let (y,w) = zin
y)

inl3y € nat.s(y+y)=ns(z’) (8(Y), trans (s(y) +s(y)) (s(s(y +y))) (s(2”)) (comp s(y) y)eqls(w))
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Chapter 7

Classical Logic

Unlike constructive logic which is usually explained operationally by associating each proposition A
with a proof proving or refuting its truth, classical logic is a logic that is usually explained denotationally
by associating each proposition A with a truth value, either true T or false F. As there are only two
truth values in classical logic, it is both sound and complete to check the truth value of a proposition
A with a truth table in which all possible combinations of truth values of atomic propositions in A are
considered in turn. For example, the connectives in classical propositional logic can be explained as
follows:

A|B|ANB|AVB|ADB
T|T T T T
T|F F T F
F\T F T T
F|F F F T

In this chapter, we investigate proof-theoretic formulations of classical logic based on inference rules.
We also investigate its operational interpretation, or its computational contents, to obtain useful con-
structs for programming languages.

7.1 A judgmental formulation of classical logic

We have already seen in Chapter 2 that the addition of the following rule to constructive logic yields

classical logic:
EM

AV —A true
The rule EM, called the law of excluded middle, asserts that for any proposition A, either A true or —=A true
must hold regardless of the existence of an actual proof. Another way to obtain classical logic is to add
one of the following rules:

DNE Peirce

——A D Atrue ((AD>DB)DA) D Atrue

The rule DNE, called the law of double-negation elimination, asserts that if A cannot be false, it must be
true. The rule Peirce, called Peirce’s law, says that a proof of A true may freely assume A D B true for
an arbitrary proposition B. The three rules above are all equivalent to each other in that the addition of
any of these rules renders the other two rules derivable.

Note that these rules destroy the orthogonality of the system. For example, in the presence of the
rule EM which uses two connectives O and — in the conclusion, the meaning of O depends on the
meaning of — (or vice versa). The rule Peirce is also bad because it tries to explain the meaning of
D presupposing the notion of O. (As a rule of thumb, an inference rule using multiple connectives,
whether same or different, is always bad.) Instead of using these rules, therefore, we develop a system
of classical logic based purely on judgmental notions.

We recall that at the heart of classical logic lies the principle of proof by contradiction (which is com-
monly employed in mathematical proofs). Using a truth judgment A true and a falsehood judgment
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A false (Which denotes “A is false”), we can explain the idea as follows: in order to prove A true, we first
assume A false and then show a contraction, which is established by a proof of B true when an assump-
tion B false is available for some proposition B. Observe that we may have to make an assumption of
a falsehood judgment in the course of a proof, but we never directly conclude a falsehood judgment.
Thus we use a new form of hypothetical judgment I'; A g C' true (where the subscript K stands for
Klassical), in which antecedents may include falsehood judgments, but the succedent is always a truth
judgment:
I == -|T,Atrue
A = | A A false

All previous rules from constructive propositional logic (which do not need falsehood judgments)
are turned into corresponding rules for classical propositional logic by rewriting I' - C' true asI'; A g C true.
The principle of proof by contradiction is implemented by the following two rules:

I'; A, A false bk A true I A, A false Fi A true
I Ak A true I A, A false Fg C true

I A bk C true where

Contra]

Contral

The rule Contra | states that in order to prove A true, we may assume A false and then show a contra-
diction by proving A true; hence it is best read in a bottom-up way (as indicated by the upward arrow
in Contra 7). The rule Contra | states that if antecedents I" and A, A false are inconsistent (because A true
is provable from I and A, A false), we may conclude C' true for any proposition C as long as the same
antecedents I and A, A false are available; hence it is best read in a top-down way (as indicated by the
downward arrow in Contra |). Note that the premise is the same in both rules.

Here are a couple of examples showing that the rules EM and DNE are now derivable.

A true; AV —A false g A true HYF\)/I
A true; AV —A false Fx AV —A true C L tra
A true; AV A false Fg L true ontra
3 AV —A false Fg = A true Vi
5 AV A false bk AV —A true R
Contral
Pk AV —A true

Hyp
Contra

-

——A true, A true; A false F¢ A true

H A true, A true; A false Fx L true
A true; A false g ~—A true P ——A true; A false Fx —A true

——A true; A false g L true

A true; A false Fx A true

——A true; - b A true

bk mmA D A true

-

Contral

ol

7.2 Proof terms

We apply the Curry-Howard isomorphism to the new form of hypothetical judgment I'; A ¢ C' true by
first associating variables with judgments in I' and A and then assigning a proof term of type C. For
A true in I', we bind a variable x to type A to obtain = : A. For A false in A, we need a new notation
to indicate that a variable x is associated with a falsehood judgment A false. We choose a new notation
x : A false, in which A false can be thought of as a type instead of a judgment; in the context of type
theory, A false stands for the type of continuations of type A.

r == |Tz:A
A = A x: A false
As proof terms corresponding to the rules Contra T and Contra |, we use callecc « : A false. M and
throw M to  which are constructs for capturing and throwing continuations in programming lan-
guages:
A z: Afalsebx M : A Az Afalsebx M : A

I'Abgcallccz : A false. M - A Callce A x 2 A false g throw M toz : C Throw
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m Contra

F,A/\B7A=>A/\L F,A/\B,B:A/\L I'= A ANB,A T'=— B, AANB,A
[LANB— A E ILANB— A VR I — AAB,A N
I'NAvB,A=— A T,AVB,B=— A I'= A,AVvBA I'= B,AV B,A R

T.AVB — A VL v =avB.a 't T —=avB A ViR

I,-A— A,A [A— —A,A
r—T1.a P ri=att Ta=a L T=—aa R
INA>B=— A A T)ADB,B= A I'NA=— B,ADB,A
INMA>B= A - I'= AD>BA

Figure 7.1: Sequent calculus for classical propositional logic

In the rule Throw, proof term M is allowed to contain variable x.
A simple case of reducing a proof term throw M to x occurs when M does not contain x:

callccx : A false.othrow M toz] =r M

Here o[throw M to z] denotes a certain proof term containing throw M to x as a subterm. By the rule
Callcg, it has type A so that the whole proof term callcc  : A false. othrow M to z] is assigned type A.
By the rule Throw, proof term M also has type A, and thus the type of the proof term being reduced
is preserved. For a full account of reductions of callcc z : A false. M and throw M to z, we need to
formalize the definition of o, which we do not pursue here.

A proof term LEM of type A vV —A is given as follows:

LEM = calleccx: AV —A false.inry Ay: A.throw inl_4 y to z
A proof term DNE of type =—A D A s given as follows:

DNE = Jx:——A.callccy: A false.aborts (x (Az: A.throw z to y))

7.3 Sequent calculus for classical logic

The sequent calculus for classical logic uses a new form of sequent whose definition is motivated by
the principle of proof by contradiction, rather than the notion of normal proof as in constructive logic.
We write Ay,--- ,A, = B, , By, to mean that assumptions of A true, ---, A, true and By false,
.-+, By, false lead to a contradiction. Note that unlike a sequent I' — C for constructive logic, the new
sequent allows multiple propositions in the right side. We use I" for a collection of propositions in the
left side and A for a collection of propositions in the right side (e.g., I' = A). We assume that I' and A
are unordered.

The definition of the new form of sequent justifies the following rule, which is similar to the rule
Init in constructive logic but actually expresses the principle of proof by contradiction:

T A= AA Conir

The rule Contra says that since assumptions of A true and A false lead to a contradiction, the proof of
I'’ A = A, A'is completed immediately.

As in the sequent calculus for constructive logic, we give left and right rules for each connective.
Although these rules appear to be mechanically derived from their corresponding rules in the sequent
calculus for constructive logic, their interpretation is different because the definition of I' = A is moti-
vated differently from the definition of I' — C'. As each rule focuses on a proposition in the left or right
side in a given sequent, we choose to reuse the rule names from the sequent calculus for constructive
logic.

Figure 7.1 shows all the rules in the sequent calculus for classical propositional logic. As in the se-
quent calculus for constructive logic, the proof of a sequent always proceeds in a bottom-up way. There
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are two important observations to make. First, unlike in the sequent calculus for constructive logic, the
right side of a sequent should not be read as a collection of conclusions to be drawn; rather it should be
read as a collection of assumptions (consisting of falsehood judgments). Second the premise in a rule
(especially in a right rule) always contains more assumptions than the conclusion: we never cancel an
existing assumption because the goal is to elicit a contradiction from a collection of assumptions.

The left rules ALy, ALg, VL can be read in the same manner as their counterparts in the sequent cal-
culus for constructive logic. The right rules, however, cannot be read in the same manner because the
right side of a sequent should be read not as a collection of conclusions but as a collection of assump-
tions. In the rule AR, for example, we use an assumption A A B false to yield a contradiction, rather
than deduce a conclusion A A B false. Since A A B false holds when either A false or B false holds, we
have to show a contradiction in each case. (Using the right side as a collection of conclusions would
make it difficult, or even impossible, to make sense of the rule AR.) The right rules VR, and VR show
that we never cancel an existing assumption.

The rule TR makes sense because an assumption T false expresses a contradiction: T cannot be
false. Likewise the rule 1L makes sense because L cannot be true. The rule —L states that assum-
ing —A true is equivalent to assuming A false; similarly the rule R states that assuming —A false is
equivalent to assuming A true. (Here we do not use the notational definition of ~Aas A D 1.)

Although Figure 7.1 includes the rules DL and DR, these rules are in fact derived rules because im-
plication is a derived notion: classical logic has no notion of transforming a proof into another because
every proposition denotes just a truth value, and thus A D B is defined as —A Vv B. Lack of the notion
of implication in classical logic is also the reason why A D B is assigned a truth value 7" whenever A is
assigned a truth value F.

The sequent calculus in Figure 7.1 satisfies the weakening and contraction properties which allow
us to use a proposition A inI' or A as many times as necessary in a proof of I' => A. It also satisfies the
subformula property in the same sense as in the sequent calculus for constructive logic, which in turn
implies that the sequent calculus is decidable.

Proposition 7.1 (Structural properties).
(Weakening) IfI' = A, then', A = A.
IfT' = A, thenT = A, A.
(Contraction) IfT,A, A= A, thenT, A = A.
IfT' = A, A A, thenT = A, A.

Proof. By induction on the structure of the proof of ' = Aand I’ 4, A = Aand ' = 4, A,A. O
As in the sequent calculus for constructive logic, there is a cut rule whose admissibility implies that

the sequent calculus is sound (i.e., - = L is not provable). Interestingly it expresses precisely the law

of excluded middle:
I'=AA T' A=A

I'—= A

ut

The two premises cover all possibilities because for every proposition A, either A true or A false must
hold by the law of excluded middle. Hence the provability of the premises implies that a contradiction
can always be reached whenever assumptions I' and A are available. It turns out that the rule Cut
is indeed admissible, and we can conclude that the law of excluded middle is built into the sequent
calculus.

There is another way of interpreting a sequent I' = A, which is called the multi-conclusion view.
Under the multi-conclusion view, A4y, ,A,, = By, -, By, means that if assumptions A; true, - - -,
“and” A, true are available, a conclusion B; true, - - -, “or” By, true is provable. While all the rules in
Figure 7.1 continue to make sense, they fail to express the essence of classical logic, namely the principle
of proof by contradiction (or the law of excluded middle).

7.4 Double-negation translation and CPS translation
We have seen that classical logic is obtained by augmenting constructive logic with two new rules
Contra T and Contra |. As it comes with more inference rules, classical logic allows us to prove more

truth judgments than constructive logic. That is, a proof of A true in constructive logic is a valid proof
in classical logic as well, and therefore, if A true is provable in constructive logic, it is also provable
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in classical logic. The converse is certainly untrue, as evidenced by such judgments as AV —A true,
——A D Atrue,and ((A D B) D A) D A true.

It is important that more judgments being provable does not necessarily mean more expressive
power. For example, a system in which L true is provable is totally useless (and is said to be incon-
sistent), even though every truth judgment is provable. In the case of classical logic, it allows more
judgments to be provable, but is less expressive than constructive logic, which is capable of simulating
classical logic via the double-negation translation to be explained below. In essence, constructive logic can
make a finer distinction between truth and falsehood than classical logic (as it allows not only truth and
falsehood but also “excluded middle”).

We write A° for the proposition in constructive logic corresponding to proposition A in classical
logic under the double-negation translation. The translation is structural except for A O B, which is
translated to A° D -—~B°:

(ANB)” = A°AB°
(AVB)®” = A°vVB°
To = T
1° = 1
(ADB)° = A°D>-—B°
P° = P

An analogy in programming language theory is that an invocation of a “classical” function of type
A D B is in effect an invocation of a “constructive” function of type A D ——-B =AD> (B> 1)D> 1),
which returns an answer (of type L) when given an argument of type A and a return address (of type
B D 1) expecting an argument of type B.

Theorem 7.2 shows that classical logic is embedded in constructive logic via the double-negation
translation, where we use the subscript | in a hypothetical judgment to indicate that it is valid only
in Intuitionistic logic, which is another name for constructive logic. Antecedents in hypothetical judg-
ments are translated as follows:

I° = {A° true | A true e T'}
—A° = {-A° true | A false € A}

Theorem 7.2 (Embedding of classical logic in constructive logic). IfI'; A bk C true, then I'°, 2 A° | ==C*° true.

An immediate corollary of Theorem 7.2 is that classical logic is relatively consistent with constructive
logic in the sense that classical logic is consistent (i.e., L true is not provable) if and only if constructive
logic is consistent, since =—_L is logically equivalent to L. As we have shown that constructive logic is
consistent (i.e., L true is unprovable), we conclude that classical logic is also consistent.

Instead of proving Theorem 7.2 directly, we give another translation that converts a proof term M of
type A in classical logic into a proof term M° of type A° in constructive logic. The translation is usually
called the CPS (Continuation-Passing Style) translation, which enables us to simulate callcc « : A false. M
and throw M to x with A-abstractions. The main idea in the CPS translation is to interpret A = A D> L
as the type of a continuation for type A, which, when invoked with an argument of type A, initiates the
rest of the evaluation. Note that an invocation of a continuation conceptually returns an “answer” but
actually never returns, for if it did, it would return a value of type L, which is impossible.

The CPS translation is obtained by translating a proof of I'; A ¢ M : C toa proof of I'°, =A° | M° : =~C°
where I'° and —A° are defined as follows:

e = {z:A4°|z:AeTl}
-A° = {z:-A° |z A false € A}

Theorem 7.3 (CPS translation). IfI'; A Fx M : C, there exists a proof term M° such that I'°, ~A° - M° : ==C°.

Proof. By induction on the structure of the proof of I'; A -k M : C'. The proof reuses metavariables M
and C.

In each case, we only specify M°, which can be shown to satisfy I'°, ~A° - M° : =—C° by straight-
forward structural induction. M° is given as a A-abstraction Ak:C° D L. - - - (or equivalently A\k:—=C°.- "),
where k can be thought of as a continuation expecting the result of evaluating M. A typical pattern in
the CPS translation is that a proof term of type L (returning an “answer”) is built from a proof term N
of type A by applying N° to a continuation Az: A°. N’ (as in N° (Az:A°. N’)) so that = is bound to the
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result of evaluating N and the evaluation of N’ returns the final “answer.”

r:Ael
Case Ak A Hyp

z° =Mk:A° D L. kx

C AR M:A T;AFKN: B |
B T AR (M,N):AAB

(M,N)° = Xk:(A° A B°) D L.M° (A\x:A°. N° (\y:B°.k (z,y)))

C F;AFKM:A/\B/\E
ase DiAbgfst M A L

(fst M)° = Ak: A° D L. M° (Ax: A° A B°. k (fst z))

C F;Al—KM:A/\B/\E
€ T AFgsndM:B 'R

(snd M)° = Xk:B° > L. M° (Ax:A° A B°.k (snd z))

AR M A Y
[;Abginlg M:AVB "

(inlg M)° = Ak:(A° vV B°) D L. M° (Az:A°.k (inlgo x))

Case

Ak M : B Vi
T;Abginta M:AVB R

(inrga M)° = Xk:(A°V B°) D L. M° (Az:B°.k (inre x))

Case

C ARk M :AVB Toxp: A AP N, : C F,LEQ:B;A}—KNQ:C\/I
ase I'; A by case M of inl 1. Ny | inr 25. Ny : C R

(case M of inl z1. Ny | inr 5. N2)°® = Ak:C° D 1. M° (\x: A° V B°.case z of inl 1. N1° k | inr 2. No° k)

Me: A; Ak M : B
T'AFc M\ AM:ASB

(Az:A. M)° = Ak:(A° D —==B°) D L.k (Az:A°. M°)

Case |

ARk M:ADB T;ARKN:A
I'"ArFk M N: B

(M N)°=Xk:B° D> 1. M° (A\r:A° D ~=B°.N° (\y:A°. 2y k))

Case

Case ;AR (): T Tl

O0°=Ak:T° D Lk ()

AR M . L E
T:A Fy aborte M :C

(abortc M)° = Xk:C° D L. M° (A\z: L.x)

Case

Az Afalsebx M : A
I'Abgcallccx : A false. M - A

(callcc x : A false. M)° = \k:A° D L. [k/z]M° k

Case Callec

AR M A z: A false € A
I Ak throw M tox : C

throw M to z)° = M\k:C° D L. M° & O
(

Case hrow
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