
Functional Netlists ∗

Sungwoo Park Jinha Kim Hyeonseung Im
Department of Computer Science and Engineering

Pohang University of Science and Technology
Gyeongbuk, Republic of Korea

{gla,goldbar,genilhs}@postech.ac.kr

Abstract
In efforts to overcome the complexity of the syntax and the lack
of formal semantics of conventional hardware description lan-
guages, a number of functional hardware description languages
have been developed. Like conventional hardware description lan-
guages, however, functional hardware description languages even-
tually convert all source programs into netlists, which describe wire
connections in hardware circuits at the lowest level and conceal all
high-level descriptions written into source programs.

We develop a variant of the lambda calculus, called lλ (linear
lambda), which may serve as a high-level substitute for netlists. In
order to support higher-order functions, lλ uses a linear type system
which enforces the linear use of variables of function type. The
translation of lλ into structural descriptions of hardware circuits
is sound and complete in the sense that it maps expressions only
to realizable hardware circuits and that every realizable hardware
circuit has a corresponding expression in lλ. To illustrate the use
of lλ as a high-level substitute for netlists, we design a simple
hardware description language that extends lλ with polymorphism,
and use it to implement a Fast Fourier Transform circuit.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics, Syntax

General Terms Languages

Keywords Hardware description language, Functional language,
Linear type system

1. Introduction
In efforts to overcome the complexity of the syntax and the lack of
formal semantics of conventional hardware description languages
(most notably Verilog and VHDL), a number of approaches based
on functional languages have been proposed (Sharp and Rasmussen
1995; O’Donnell 1995; Bjesse et al. 1998; Matthews et al. 1998;
Li and Leeser 2000; Mycroft and Sharp 2000; Axelsson et al.
2005; Grundy et al. 2006; Ghica 2007). In fact, the idea of using

∗ This work was supported by the Korea Science and Engineering Founda-
tion (KOSEF) grant funded by the Korea government (MOST) (No. R01-
2007-000-11087-0).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

functional languages for hardware design dates back as early as
in the 1980s (Cardelli and Plotkin 1981; Sheeran 1984; Johnson
1984; Boute 1984; Meshkinpour and Ercegovac 1985) which saw
the birth of currently popular hardware description languages. The
merits of functional languages as hardware description languages
can be attributed to the fact that basic building blocks for hardware
circuits are equivalent to mathematical functions while functional
languages lend themselves to creating and composing mathemati-
cal functions.

Like conventional hardware description languages, however,
functional hardware description languages eventually convert all
source programs into netlists, the de facto assembly language for
hardware description. Netlists describe wire connections in hard-
ware circuits at the lowest level and conceal all high-level descrip-
tions written into source programs. Such a translation of functional
hardware description languages into netlists could be compared to
a direct translation of functional languages into an assembly lan-
guage rather than the lambda calculus, the core calculus for func-
tional languages.

Our goal is to develop a syntax-directed translation of the
lambda calculus into structural descriptions of hardware circuits
so that we can use it as a “high-level assembly language” for
functional hardware description languages.1 We intend to use the
lambda calculus as an assembly language in the sense that its def-
inition consists only of a minimal set of primitive constructs each
of which corresponds to a specific method of combining hardware
components, e.g., linking two separate components or building
feedback circuits. In comparison with netlists, the lambda calcu-
lus is still a high-level language because it makes no explicit use
of low-level constructs, such as ports and wires, characterizing
netlists. Thus we wish to use the lambda calculus as a high-level
substitute for netlists, or as functional netlists.

The basic idea for the translation is already in use by exist-
ing functional hardware description languages: functions represent
hardware circuits taking input streams to emit output streams while
applications link two separate components. The problem is still in-
teresting, however, because we allow higher-order functions as in
conventional functional languages. (The translation becomes triv-
ial if higher-order functions are not allowed.) The use of higher-
order functions improves the expressive power of the lambda cal-
culus as functional netlists. For example, we can express various
higher-order combinators within the lambda calculus itself with-
out recourse to additional meta-programming constructs or another
host language.

To correctly translate higher-order functions, we need to take
into consideration the fact that hardware circuits are physical re-

1 Cardelli and Plotkin (Cardelli and Plotkin 1981) call their algebra for
hardware description “a high-level chip assembly language.”

353

sources that cannot be shared in general. Consider a function

k = λx :1. and x x

where 1 is a base type for bitstreams and and denotes an AND
gate. Since a bitstream can be shared by multiple wires, k may use
x twice in its body. Now consider a higher-order function

g = λf :1→1. f (f 0).

Since f represents a hardware circuit that takes a bitstream to emit
another bitstream and thus cannot be shared by multiple hardware
components, g may not use f twice in its body. A workaround is to
rewrite g as

g′ = λf1 :1→1. λf2 :1→1. f1 (f2 0)

and expand every application g e into g′ e e by duplicating e.
Unfortunately it is not always possible to determine how many

times we need to duplicate each expression. As an example, con-
sider another higher-order function

h = λf : (1→1)→1. f (λx :1. x).

Since it is unknown how many times f uses its argument λx :1. x,
we cannot expand f (λx :1. x) in the same way that we expand
g e in the previous example. A quick fix is to annotate (1→1)→1
with a number n indicating how many times f uses its argument:

h′ = λf : (1→1)n→1. f (λx :1. x)

A further development of this idea leads to a type system in which
variables of function types are used exactly once, i.e., linearly.

Building upon these observations, we design a variant of the
lambda calculus, called lλ (linear lambda), which uses a linear type
system to enforce the linear use of variables of function type. The
type system of lλ draws a distinction between sharable types and
linear types. A function with a sharable input type (e.g., 1) may
use its argument more than once; a function with a linear input
type (e.g., 1→1) must use its argument exactly once. Hence there
arise two kinds of function types: one with a sharable input type
and the other with a linear input type. These function types in turn
constitute linear types of lλ. The linear type system of lλ is similar
in spirit to the affine type system of Ghica (2007) in that both type
systems prevent erroneous sharing of hardware circuits.

We develop a syntax-directed translation of lλ into structural
descriptions of hardware circuits. The translation is sound and
complete in the following sense:

• The translation is sound in the sense that it maps expressions
only to realizable hardware circuits. A hardware circuit is re-
alizable if it contains no input terminal (accepting a single bit-
stream) connected with multiple wires.

• The translation is complete in the sense that every realizable
hardware circuit has a corresponding expression in lλ.

In addition, the type system of lλ is sound and complete with re-
spect to the translation in the sense that expressions are mapped to
hardware circuits if and only if they are well-typed. These proper-
ties of the translation allow lλ to serve as a practical substitute for
netlists.

To illustrate the use of lλ as a high-level assembly language
for representing hardware circuits, we design a simple hardware
description language that extends lλ with polymorphism. An ex-
pression of a polymorphic type describes a family of hardware cir-
cuits with essentially the same layout of hardware components, and
polymorphism offers a simple form of metaprogramming which is
particularly useful for writing higher-order combinators. We use
the extension of lλ to implement a Fast Fourier Transform circuit.
The actual code for the circuit is 60 lines long and expands to 5158
lines of Verilog code by our prototype translator.

type τ ::= θ sharable type
κ linear type

sharable type θ ::= 1 single-bit
θ × θ sharable product

linear type κ ::= θ→τ sharable input
κ(τ linear input

expression e ::= x sharable variable
f linear variable
λx :θ. e sharable input function
e e sharable input application
λ̂f :κ. e linear input function
eˆe linear input application
(e, e) pair
proj e of (x, x) in e projection
fix x :θ. e fixed point expression
c constant

sharable typing context Γ ::= · | Γ, x : θ
linear typing context ∆ ::= · | ∆, f : κ

Figure 1. Abstract syntax of lλ

As Sheeran (2005) notes, “functional programming and hard-
ware design are a perfect match.” Hence it is actually no surprise
that there is already an extensive literature on functional hardware
description languages. What comes as a surprise, however, is that
there has been little effort to formally interpret the lambda calculus,
the core calculus for all functional languages, directly in terms of
structural descriptions of hardware circuits. The development of lλ
has been motivated by a desire for such a formal interpretation of
the lambda calculus.

This paper is organized as follows. Section 2 presents the ab-
stract syntax and the type system of lλ and explains basic ideas
behind the translation of lλ. Section 3 presents a few examples of
mapping expressions to hardware circuits and formulates the trans-
lation of lλ. Section 4 proves the soundness and completeness of
the translation and the type system. Section 5 discusses an alterna-
tive translation of lλ and how to eliminate redundant wires. Sec-
tion 6 presents a Fast Fourier Transform circuit implemented in lλ
extended with polymorphism. Section 7 discusses related work and
Section 8 concludes.

2. Basics of lλ
This section presents the abstract syntax and the type system of lλ.
It also formalizes structural specifications of hardware circuits to
be employed in the translation of lλ.

2.1 Abstract syntax and type system
Figure 1 shows the abstract syntax of lλ which builds on the
simply typed lambda calculus with product types. A type τ is
either a sharable type θ or a linear type κ. (Sharable types and
linear types are disjoint.) Sharable types correspond to base types
in general programming languages (e.g., 32-bit integers) or their
combinations. For the sake of simplicity, we use only single-bit
type 1 and product types θ1 × θ2 which suffice for supporting
general forms of sharable types. Linear types are another name for
function types in lλ. A function of type θ→τ may use its argument
(of sharable type θ) more than once in its body, but a function
of type κ(τ must use its argument (of linear type κ) exactly
once. Note that lλ uses product types of sharable types only (i.e.,
no product types of linear types) and that fixed point expressions
permit only sharable variables in their binders.

354

x : θ ∈ Γ
Γ; · ` x : θ

Var
Γ; f : κ ` f : κ

LVar

Γ, x : θ; ∆ ` e : τ

Γ; ∆ ` λx :θ. e : θ→τ
→I

Γ; ∆, f : κ ` e : τ

Γ; ∆ ` λ̂f :κ. e : κ(τ
(I

Γ; ∆1 ` e1 : θ→τ Γ; ∆2 ` e2 : θ

Γ; ∆1, ∆2 ` e1 e2 : τ
→E

Γ; ∆1 ` e1 : κ(τ Γ; ∆2 ` e2 : κ

Γ; ∆1, ∆2 ` e1ˆe2 : τ
(E

Γ; ∆1 ` e1 : θ1 Γ; ∆2 ` e2 : θ2

Γ; ∆1, ∆2 ` (e1, e2) : θ1 × θ2
×I

Γ; ∆ ` e : θ1 × θ2 Γ, x1 : θ1, x2 : θ2; ∆
′ ` e′ : τ

Γ; ∆, ∆′ ` proj e of (x1, x2) in e′ : τ
×E

Γ, x : θ; ∆ ` e : θ

Γ; ∆ ` fix x :θ. e : θ
Fix

Figure 2. Type system of lλ

In order to simplify the presentation of the definition of lλ,
we choose to syntactically distinguish between sharable variables
x (of sharable type) and linear variables f (of linear type). Ac-
cordingly we use two kinds of functions and applications: λx :θ. e
and e e for sharable input types and λ̂f :κ. e and e ˆ e for lin-
ear input types. Pairs (e, e) and projections proj e of (x, x) in e
are expressions for product types. We use fixed point expressions
fix x :θ. e to build feedback circuits. Constants c denote atomic
hardware components. For example, we may use a constant reg
for a single-bit register and another constant and for an AND gate.

Figure 2 shows the type system of lλ. It uses a typing judgment
Γ; ∆ ` e : τ which means that under sharable typing context Γ and
linear typing context ∆, expression e has type τ . Given a binding
x : θ in Γ, we may use x zero or more times in e, but given a
binding f : κ in ∆, we must use f exactly once in e. Thus, for
example, the rule Var uses an empty linear typing context, and in
the rules →E and (E, the linear typing context in the conclusion
is split into two in the premises. Each constant assumes a unique
type reflecting its behavioral characteristics. For example, reg has
a linear type 1→1 because it emits a bitstream fed as input (after
a delay). For and, we assign either 1→(1→1) or (1× 1)→1.

2.2 Structural specifications of hardware circuits
If we are to interpret expressions in lλ as descriptions of hardware
circuits, we need a formal system for specifying hardware circuits
at a lower structural level. We depart from the standard netlist
specification (which declares all input terminals, output terminals,
and wires individually) in favor of a more concise system described
below.

At the physical level, a hardware circuit consists of hardware
components and connecting wires. A hardware component has
one or more terminals to which external wires can be connected.
We assume that every wire is unidirectional and never alternates
the direction of the bitstream it transmits. Hence a wire always
connects an output terminal o, emitting a bitstream, to an input
terminal i, receiving a bitstream. Schematically we write an input
terminal as ◦ and an output terminal as •. Then we can draw a wire
connecting an output terminal o to an input terminal i as follows:

Note that a wire only connects an output terminal to an input
terminal and does not have its own terminals. We assume that input
and output terminals are syntactically distinguished, i.e., i = o
never holds.

The translation of lλ refines the physical view of hardware cir-
cuits by supplanting wires by connection constraints. A connection
constraint o 7→ i specifies that the bitstream emitted from output
terminal o be fed into input terminal i. To realize o 7→ i in a hard-
ware circuit, we can either connect o to i via a wire or just super-
impose o on i (which is equivalent to connecting o to i via a wire
of zero length).

Now we can specify the structure of a hardware circuit with a
set H of atomic hardware components and a set C of connection
constraints. Examples of atomic hardware components are a con-
stant (zero) generator written as 0[o], a single-bit register written as
reg[i, o], and an AND gate written as and[i1, i2, o]:

atomic hardware component schematic diagram

0[o] ⇔

reg[i, o] ⇔

and[i1, i2, o] ⇔

We write |H| and |C| for the set of input and output terminals
in H and C, respectively. For example, we have |H, reg[i, o]| =
|H| ∪ {i, o} and |C, o 7→ i| = |C| ∪ {o, i}.

We say that a set of connection constraints is realizable if no
input terminal receives bitstreams from multiple output terminals:

Definition 2.1. C is realizable if there is no input terminal i such
that o 7→ i ∈ C, o′ 7→ i ∈ C, and o 6= o′.

If an expression is translated to a pair of H and C, we have to
show that C is realizable. Otherwise unpredictable behavior may
occur because of input terminals receiving multiple bitstreams from
independent sources.

Proposition 2.2. If both C1 and C2 are realizable and there is no
input terminal i ∈ |C1| ∩ |C2|, then C1 ∪ C2 is realizable.

Proof. Suppose that C1 ∪ C2 is not realizable: there is an input
terminal i such that o 7→ i ∈ C1 ∪ C2, o′ 7→ i ∈ C1 ∪ C2, and
o 6= o′. Since i 6∈ |C1| ∩ |C2|, we have either o 7→ i ∈ C1,
o′ 7→ i ∈ C1 (meaning that C1 is not realizable) or o 7→ i ∈ C2,
o′ 7→ i ∈ C2 (meaning that C2 is not realizable). Both cases result
in a contradiction because of the assumption that both C1 and C2

are realizable.

2.3 Output and input interfaces
In order to map expressions to hardware circuits, the translation of
lλ needs to know not only how to describe the structure of hardware
circuits, but also how to interface with them. For example, a hard-
ware circuit generated from an application e1 e2 includes two sep-
arate hardware circuits generated from e1 and e2, and composing
the two hardware circuits requires us to identify which input and
output terminals need to be connected together. Thus the composi-
tional nature of the translation leads us to define output interfaces
which consist of input and output terminals through which external
hardware circuits communicate. That is, only those terminals in the
output interface are exposed to external hardware circuits and we
essentially abstract hardware circuits as output interfaces.

355

Example 1. An expression e1 of single-bit type 1 is mapped to a
hardware circuit emitting a bitstream through an output terminal o:

e1 : 1 ⇒

Hence the output interface for e1 consists only of output terminal o
while all other terminals are hidden.

Example 2. An expression e2 of product type 1× 1 is mapped
to a hardware circuit emitting two bitstreams through two output
terminals o1 and o2:

e2 : 1× 1 ⇒

Hence the output interface for e2 consists only of output terminals
o1 and o2 while all other terminals are hidden. We write o1 × o2

for the output interface for e.
Example 3. An expression e3 of function type 1→1 is mapped

to a hardware circuit accepting a bitstream from an input terminal
i and emitting a bitstream through an output terminal o:

e3 : 1→1 ⇒

Hence the output interface for e3 consists only of input terminal i
and output terminal o while all other terminals are hidden. For the
output interface for e3, we write i→o to indicate that a bitstream
flows from i to o.

Example 4. An expression e4 of type (1→1)(1 is mapped
to a hardware circuit that first communicates with an external hard-
ware circuit through an output terminal o and an input terminal i
and then emits a bitstream through another output terminal o′:

e4 : (1→1)(1 ⇒

The external hardware circuit should be generated from an ex-
pression of type 1→1. For the output interface for e4, we write
(o→ i)(o′ to indicate that a bitstream flows from o to i (not from
i to o) and eventually exits at o′.

Example 5. An expression e5 of type (1→1)((1→1) is
mapped to a hardware circuit that accepts a bitstream from an
input terminal i′, communicates with an external hardware circuit
through an output terminal o and an input terminal i, and emits a
bitstream through an output terminal o′:

e5 : (1→1)((1→1) ⇒

The external hardware circuit should be generated from an ex-
pression of type 1→1. For the output interface for e5, we write
(o→ i)((i′→o′) to indicate that a bitstream flows from i′ to o′

and from o to i.

Examples 3, 4, and 5 illustrate that output interfaces for expres-
sions of function type consist not only of output terminals but also

of input terminals. For example, the output interface i→o for ex-
pression e3 includes input terminal i to receive a bitstream from an
external hardware circuit (generated from an expression of type 1);
the output interface (o→ i)(o′ for expression e4 uses input termi-
nal i, as well as output terminal o, to communicate with an external
hardware circuit (generated from an expression of type 1→1). We
refer to these input and output terminals that are to be connected
with external hardware circuits as input interfaces.

To exploit an existing hardware circuit, we first have to prepare
an input interface compatible with its output interface. Here are a
couple of examples:

Example 6. To exploit a hardware circuit producing a bitstream,
we need an input interface consisting of a single input terminal i:

Example 7. To exploit a hardware circuit accepting a bitstream
and emitting another bitstream, we need an input interface consist-
ing of an output terminal o and an input terminal i:

We write such an input interface as o→ i (not as i→o) to indicate
that a bitstream flows from o to i.

From Examples 3 and 6, we see that an output interface for type
θ→τ includes an input interface for type θ. From Examples 4 and
7, we see that an output interface for type κ(τ includes an input
interface for type κ.

Generalizing these observations, we inductively define output
and input interfaces as follows:

output interface O ::= o | O ×O | I→O | I (O
input interface I ::= i | I × I | O→I | O(I

In order to clarify the meaning of each form of output and input
interfaces, we introduce two judgments O B τ and I C τ which as-
sign types to output and input interfaces. Informally O B τ means
that O is an output interface of a hardware circuit generated from
an expression of type τ , or simply that O is an output interface of
type τ . Similarly I C τ means that we can connect input interface
I with any output interface of type τ , or simply that I is an input
interface of type τ .

Figure 3 shows the rules for the judgments O B τ and I C τ .
We write]{S, S′} to mean that S and S′ share no terminals where
S and S′ range over output and input interfaces. That is,]{S, S′}
holds if and only if |S| ∩ |S′| = ∅ holds where |S| denotes the set
of input and output terminals in S:

|i| = {i}
I1 × I2	=	I1	∪	I2
O→I	=	O	∪	I
O(I	=	O	∪	I

|o| = {o}
O1 ×O2	=	O1	∪	O2
I→O	=	I	∪	O
I (O	=	I	∪	O

Note that unlike the rule ×C , the rule ×B does not require
]{O1, O2} because a single output terminal can be connected to
multiple input terminals.

Proposition 2.3.
If O B θ, then there is no input terminal i ∈ |O|.
If I C θ, then there is no output terminal o ∈ |I|.

356

o B 1
1B

i C 1
1C

O1 B θ1 O2 B θ2

O1 ×O2 B θ1 × θ2
×B

I1 C θ1 I2 C θ2]{I1, I2}
I1 × I2 C θ1 × θ2

×C

I C θ O B τ]{I, O}
I→O B θ→τ

→B
O B θ I C τ]{O, I}

O→I C θ→τ
→C

I C κ O B τ]{I, O}
I (O B κ(τ

(B
O B κ I C τ]{O, I}

O(I C κ(τ
(C

Figure 3. Rules for assigning types to output and input interfaces

We write O ./ I for the set of connection constraints for con-
necting output interface O and input interface I:

o ./ i = {o 7→ i}
O1 ×O2 ./ I1 × I2 = O1 ./ I1 ∪O2 ./ I2

I→O ./ O′→I ′ = O ./ I ′ ∪O′ ./ I
I (O ./ O′(I ′ = O ./ I ′ ∪O′ ./ I

O ./ I implicitly assumes that O and I are syntactically compati-
ble (e.g., O1 ×O2 ./ O′→I ′ never holds). Proposition 2.4 shows
that an output interface and an input interface of the same type can
be safely connected if both share no input terminal.

Proposition 2.4. If O B τ , I C τ , and there is no input terminal
i ∈ |O| ∩ |I|, then O ./ I is realizable.

The translation of lλ maps an expression to a tuple (H, C, O)
consisting of a set H of hardware components, a set C of connec-
tion constraints, and an output interface O. Thus it uses not only H
and C to specify how to connect hardware components, but also O
to specify how to interface with the generated hardware circuit.

2.4 Connection points
In lλ, we can write expressions that describe not actual hard-
ware circuits but patterns of connecting several wires. For example,
λx :1. x describes a pattern of relaying a bitstream without actu-
ally linking two wires. Another example is λx :1. (x, x) which de-
scribes a pattern of replicating a bitstream into two without actually
connecting an input wire to two output wires. In order to translate
such expressions, lλ uses a special kind of hardware components
called connection points.

A connection point consists of an input terminal i and an output
terminal o adjacent to each other and is written as pt[i, o]:

pt[i, o] ⇔

We may think of pt[i, o] as transmitting a bitstream from i to o
(not from o to i) via a wire of zero length. Although it has its
own terminals (unlike wires), a connection point just serves as
a special mark for linking separate wires and does not occupy
a physical area when realized as a hardware circuit. Section 3.1
shows examples of using connection points in the translation of lλ.
Section 5.1 discusses an alternative way of translating lλ without
using connection points.

3. Translation of lλ
This section presents the translation of lλ. To develop an intuition
for it, we begin with a few examples of mapping expressions to
hardware circuits. Then we formulate it with rules for translating
types and expressions.

3.1 Examples
The translation uses a judgment e ⇒ (H, C, O) to mean that ex-
pression e describes a hardware circuit specified by tuple (H, C, O).
An invariant here is that if expression e has type τ , output interface
O has the same type, i.e., O B τ . We assume three constants zero
of type 1, reg of type 1→1, and and of type 1→(1→1) which
are mapped to constant (zero) generators, single-bit registers, and
AND gates, respectively; for visual clarity, we use traditional set
notation to write H and C:

zero ⇒ ({0[o]}, ∅, o)
reg ⇒ ({reg[i, o]}, ∅, i→o)
and ⇒ ({and[i1, i2, o]}, ∅, i1→(i2→o))

Note that the translation uses a declarative style in that no constants
specify specific identifiers for terminals. Hence, for example, dif-
ferent instances of zero generate different hardware components
0[o] and 0[o′]. The translation, however, ensures that different in-
stances of the same constant never share identifiers for terminals.

In the examples below, we realize a connection constraint o 7→ i
as a wire connecting o to i.

Sharable input function
Consider an identify function λx :1. x of type 1→1. Since it
passes an input bitstream without change, λx :1. x requires no
hardware component other than a single connection point, say,
pt[i, o]. We generate such a hardware circuit consisting of pt[i, o]
in the following way.

When interpreting the binder x : 1 in λx :1. x, we associate
pt[i, o] with x so that an input bitstream is fed into i and an output
bitstream is emitted from o. In essence, the translation needs to
specify an input interface and an output interface for the variable
in each binder, which are i and o, respectively, in the case of x.
When interpreting the body of λx :1. x, however, we use only o as
the output interface for x. Then the output interface for λx :1. x
becomes i→o because as a function of type 1→1, it receives a
bitstream via i to emit another bitstream via o:

λx :1. x ⇒ ({pt[i, o]}, ∅, i→o)

Note that i→o also has type 1→1, i.e., i→o B 1→1.
Note that it is not the instance of x in the body but the binder

x : 1 that generates pt[i, o]. For example, even if the body changes
from x to (x, x), we do not generate an additional connection point.
Instead we only update the output interface from i→o to i→(o, o),
which is feasible because output terminal o can be shared by both
instances of x:

λx :1. (x, x) ⇒ ({pt[i, o]}, ∅, i→(o, o))

Thus λx :1. (x, x) in effect replicates an input bitstream into two
output bitstreams.

Now let us build an expression exploiting such two output
bitstreams. An application (λx :1. (x, x)) zero associates a new
hardware component 0[o′] with zero and connects output terminal
o′ to existing input terminal i:

(λx :1. (x, x)) zero⇒ ({pt[i, o], 0[o′]}, {o′ 7→ i}, (o, o))

To bind the two instances of o in output interface (o, o) to different
sharable variables, we use a projection. For example, the following
expression binds the two instances of o to sharable variables y and
z:

proj (λx :1. (x, x)) zero of (y, z) in and y z

357

By associating a new hardware component and[i1, i2, o
′′] with

and, we obtain the following mapping:

proj (λx :1. (x, x)) zero of (y, z) in and y z
⇒ ({pt[i, o], 0[o′], and[i1, i2, o

′′]}, {o′ 7→ i, o 7→ i1, o 7→ i2}, o′′)

The above expression is equivalent to (λx :1. and x x) zero
which produces a hardware circuit with the same structure:

(λx :1. and x x) zero
⇒ ({pt[i, o], 0[o′], and[i1, i2, o

′′]}, {o′ 7→ i, o 7→ i1, o 7→ i2}, o′′)
If we simplify it to and zero zero, however, we obtain a hardware
circuit with a different structure:

and zero zero
⇒ ({0[o1], 0[o2], and[i1, i2, o]}, {o1 7→ i1, o2 7→ i2}, o)

Linear input function

Consider another identify function λ̂f :1→1. f of type
(1→1)((1→1). First we have to specify an input interface
and an output interface for linear variable f . Recall from the pre-
vious example that an output interface of type 1→1 consists of a
pair of input and output terminals. Thus an input interface of type
1→1 consists of a pair of output and input terminals.

It is important that these output and input terminals for the
input interface, say, o and i, must belong to separate connection
points so that we can exploit an external hardware circuit providing
an output interface of type 1→1 in the intended way, i.e., by
transmitting a bitstream via o (as input to the external hardware
circuit) and receiving the resultant bitstream via i (as output from
the external hardware circuit). If o and i happen to belong to the
same connection point, any hardware circuit connected with the
input interface degenerates into a closed loop circuit. Thus we
associate two separate connection points pt[i1, o1] and pt[i2, o2]
with f , and use o1→ i2 for its input interface and i1→o2 for
its output interface. Then the output interface for λ̂f :1→1. f
becomes (o1→ i2)((i1→o2):

λ̂f :1→1. f ⇒ ({pt[i1, o1], pt[i2, o2]}, ∅, (o1→ i2)((i1→o2))

If the body changes from f to f zero, we associate a new
hardware component 0[o] with zero and connect output terminal
o to the input terminal in the output interface for f , namely i1. The
output interface changes to (o1→ i2)(o2 because i1 in the output
interface for f is now hidden:

λ̂f :1→1. f zero
⇒ ({pt[i1, o1], pt[i2, o2], 0[o]}, {o 7→ i1}, (o1→ i2)(o2)

Let us apply the resultant function to reg. We associate a new
hardware component reg[i′, o′] with reg, and introduce two con-
nection constraints so that the output interface i′→o′ for reg

matches with the input interface o1→ i2 for f . The output interface
changes to o2 which is now the only terminal exposed to external
hardware components:

(λ̂f :1→1. f zero)ˆreg
⇒ ({pt[i1, o1], pt[i2, o2], 0[o], reg[i′, o′]},

{o 7→ i1, o1 7→ i′, o′ 7→ i2}, o2)

Fixed point expression
A fixed point expression fix x :θ. e builds a feedback circuit whose
output is accessible to itself via sharable variable x. As an example,
let us build a feedback circuit from fix x :1. and zero (reg x). We
associate hardware components and[i1, i2, o], 0[o′], and reg[i′′, o′′]
with and, zero, and reg, respectively. Under the assumption that
the output interface for x is a hypothetical output terminal ox, the
body and zero (reg x) generates a hardware circuit connecting ox

to i′′ and providing an output interface o:

and zero (reg x)
⇒ ({and[i1, i2, o], 0[o′], reg[i′′, o′′]},

{o′ 7→ i1, o
′′ 7→ i2, ox 7→ i′′}, o)

Now there are two ways to complete the feedback circuit, de-
pending on whether we generate a connection point for x or not.
First we associate an actual connection point pt[ix, ox] with x and
connect o to ix:

fix x :1. and zero (reg x)
⇒ ({and[i1, i2, o], 0[o′], reg[i′′, o′′], pt[ix, ox]},

{o′ 7→ i1, o
′′ 7→ i2, ox 7→ i′′, o 7→ ix}, o)

Second we identify output terminal ox with output interface o for
the whole hardware circuit, i.e., by enforcing ox = o:

fix x :1. and zero (reg x)
⇒ ({and[i1, i2, o], 0[o′], reg[i′′, o′′]},

{o′ 7→ i1, o
′′ 7→ i2, o 7→ i′′}, o)

The two hardware circuits are equivalent because a connection
point does not occupy a physical area. The translation of lλ uses the
first approach which does not have to deal with equations between
output terminals such as ox = o.

A fixed point expression in lλ does not permit a linear variable
in its binder. A fixed point expression of the form fix f :κ. e is cer-
tainly conceivable, but interpreting it as a description of a hardware
circuit necessitates the hardware synthesis process (for rewriting

358

1 CB (pt[i, o], i, o)
1CB

θ1 CB (H1, I1, O1) θ2 CB (H2, I2, O2)]{H1, H2}
θ1 × θ2 CB (H1 ∪H2, (I1, I2), (O1, O2))

×CB

θ CB (H, I, O) τ CB (H ′, I ′, O′)]{H, H ′}
θ→τ CB (H ∪H ′, O→I ′, I→O′)

→CB

κ CB (H, I, O) τ CB (H ′, I ′, O′)]{H, H ′}
κ(τ CB (H ∪H ′, O(I ′, I (O′)

(CB

Figure 4. Rules for translating types

an expression by analyzing its behavior so that it can be mapped
directly to a hardware circuit), which is beyond the scope of this
paper.

3.2 Translation of types
We have seen that a binder x : τ or f : τ generates connection
points in accordance with type τ . We split terminals in these con-
nection points into an input interface and an output interface for
variable x or f . Hence we need rules for translating types before
developing rules for translating expressions.

We use a judgment τ CB (H, I, O) to mean that a variable of
type τ may use I and O as its input and output interfaces and
that all terminals in I and O belong to connection points in H .
Operationally we may think of τ CB (H, I, O) as translating input
τ into output (H, I, O) (where identifiers for terminals in H are
not uniquely determined by τ). Thus, given a binder x : τ or f : τ ,
we first generate H , I , and O such that τ CB (H, I, O), and then
use I and O as input and output interfaces for x or f .

Figure 4 shows the rules for the judgment τ CB (H, I, O). We
continue to write]{S, S′} to mean that S and S′ share no termi-
nals, i.e., |S| ∩ |S′| = ∅, where S and S′ now range over sets of
hardware components as well as output and input interfaces. Note
that 1CB is the only rule that actually generates a connection point,
which implies that H in τ CB (H, I, O) has the same number of
connection points as the number of 1’s in τ .

Lemma 3.1. If τ CB (H, I, O), then
(1) |H| = |I| ∪ |O|,
(2)]{I, O},
(3) I C τ and O B τ .

3.3 Translation of expressions
For translating expressions, we generalize the judgment
e ⇒ (H, C, O) to a new judgment G;D ` e ⇒ (H, C, O) which
uses sharable output context G (corresponding to Γ) and linear
output context D (corresponding to ∆) to record output interfaces
for variables in e:

sharable output context G ::= · | G, x :: O
linear output context D ::= · | D, f :: O

A binding x :: O in G means that O is the output interface for
variable x; as in the type system of lλ, we may use x zero or more
times. Similarly a binding f :: O in D means that O is the output
interface for variable f , and we must use f exactly once.

The judgment G;D ` e ⇒ (H, C, O) requires that G and D be
well-formed with respect to certain typing contexts Γ and ∆ as
follows:

• We write G ∼ Γ to mean that x :: O ∈ G holds if and only if
x : θ ∈ Γ and O B θ hold, i.e., O has the same type as x.

• We write D ∼ ∆ to mean that f :: O ∈ D holds if and only if
f : κ ∈ ∆ holds with O B κ, i.e., O has the same type as f . In
addition, f1 :: O1 ∈ D and f2 :: O2 ∈ D with f1 6= f2 mean
]{O1, O2}.

Note that while output interfaces in D do not share terminals, out-
put interfaces in G may share terminals. Then variables declared in
projections (e.g., x and y in proj e of (x, y) in e′) can reuse ex-
isting output terminals without having to generate new connection
points, as will be explained later.

Figure 5 shows the rules for the judgment G;D ` e ⇒ (H, C, O).
We assume that α-conversion has been applied to every expression
so that all variables in it are distinct. As before, we write]{S, S′}
to mean |S| ∩ |S′| = ∅. We calculate |G| and |D| as follows:

|G| =
S
{|O| | x :: O ∈ G}

|D| =
S
{|O| | f :: O ∈ D}

For S and S′ in]{S, S′}, we allow unions of different kinds
of sets written as G + D, D + H , G + D + H , and etc. For
such a union S of sets, we calculate |S| as the union of sets of
terminals calculated from individual sets in S. For example, we
have |G +D + H| = |G| ∪ |D| ∪ |H|.

Each rule in Figure 5 has its counterpart in the type system of
lλ (e.g., Var for Var, LVar for LVar, and so on). Here are a few
further remarks:

• By the rules Var and LVar , variables generate no new hard-
ware components and connection constraints.

• Connection points are generated only by the rules→I , (I , and
Fix .

• Connection constraints are generated only by the rules →E ,
(E , and Fix .

• In the rule (I , D, f :: Of ∼ ∆, f : κ holds from D ∼ ∆,
Of B κ, and]{Of ,D}.

• In the rules→I and Fix ,]{Ix,D + H} implies]{Ix,G +D + H}
because Ix C θ holds by Lemma 3.1, |Ix| contains no output
terminals by Proposition 2.3, and |G| contains only output ter-
minals by Proposition 2.3.

• The premise of the rule ×I requires that both O1 and O2 be
output interfaces for sharable types.

• The rule ×E binds sharable variables x1 and x2 to output
interfaces O1 and O2 which may share output terminals with
G. It explains why output interfaces in a sharable output context
may share terminals.

• Because of sharable variables declared in projections,
G;D ` e ⇒ (H, C, O) may not satisfy]{G,D}. That is, G
and D may not be completely disjoint. For example, assum-
ing f :: I→(O1, O2), a projection proj f e′ of (x1, x2) in e
eventually binds x1 and x2 to O1 and O2, respectively.

In addition to the rules in Figure 5, we need a rule for each con-
stant. A constant generates a corresponding hardware component
and an output interface consistent with its type. We assign a fresh
identifier to each terminal in the hardware component so that differ-
ent instances of the same constant result in separate hardware com-
ponents. For example, assuming that and has type 1→(1→1), we
may use the following rule:

{i1, i2, o} 6⊂ |G| i1 6= i2

G; · ` and⇒ ({and[i1, i2, o]}, ·, i1→(i2→o))
And

Although we may read G;D ` e ⇒ (H, C, O) operationally by
regarding G,D, and e as input and (H, C, O) as output, all the rules
in Figure 5 are written in a declarative style. For example, no rule
specifies how to generate identifiers for terminals; rather each rule
only specifies that identifiers for terminals be all different. We can

359

x :: Ox ∈ G
G; · ` x ⇒ (·, ·, Ox)

Var G; f :: Of ` f ⇒ (·, ·, Of)
LVar

θ CB (Hx, Ix, Ox) G, x :: Ox;D ` e ⇒ (H, C, O)]{Ox,G +D}]{Ix,D + H}
G;D ` λx :θ. e ⇒ (Hx ∪H, C, Ix→O)

→I

κ CB (Hf , If , Of) G;D, f :: Of ` e ⇒ (H, C, O)]{Of ,G +D}]{If ,G +D + H}
G;D ` λ̂f :κ. e ⇒ (Hf ∪H, C, If (O)

(I

G;D1 ` e1 ⇒ (H1, C1, I1→O1) G;D2 ` e2 ⇒ (H2, C2, O2)]{D1 + H1,D2 + H2}
G;D1,D2 ` e1 e2 ⇒ (H1 ∪H2, C1 ∪ C2 ∪O2 ./ I1, O1)

→E

G;D1 ` e1 ⇒ (H1, C1, I1 (O1) G;D2 ` e2 ⇒ (H2, C2, O2)]{D1 + H1,D2 + H2}
G;D1,D2 ` e1ˆe2 ⇒ (H1 ∪H2, C1 ∪ C2 ∪O2 ./ I1, O1)

(E

G;D1 ` e1 ⇒ (H1, C1, O1) G;D2 ` e2 ⇒ (H2, C2, O2) O1 B θ1 O2 B θ2]{D1 + H1,D2 + H2}
G;D1,D2 ` (e1, e2) ⇒ (H1 ∪H2, C1 ∪ C2, (O1, O2))

×I

G;D ` e ⇒ (H, C, (O1, O2)) G, x1 :: O1, x2 :: O2;D′ ` e′ ⇒ (H ′, C′, O′)]{D + H,D′ + H ′}
G;D,D′ ` proj e of (x1, x2) in e′ ⇒ (H ∪H ′, C ∪ C′, O′)

×E

θ CB (Hx, Ix, Ox) G, x :: Ox;D ` e ⇒ (H, C, O)]{Ox,G +D}]{Ix,D + H}
G;D ` fix x :θ. e ⇒ (Hx ∪H, C ∪O ./ Ix, O)

Fix

Figure 5. Rules for translating expressions

make the translation more declarative by rewriting the rule Fix so
that it does not have to translate θ to create new connection points:

G, x :: O;D ` e ⇒ (H, C, O)]{O,G +D}
G;D ` fix x :θ. e ⇒ (H, C, O)

Fix ′

4. Properties of lλ
This section investigates properties of lλ. We prove the soundness
and completeness of the translation of lλ with respect to realizabil-
ity:

• Soundness: expressions are mapped only to realizable hardware
circuits (Theorem 4.1).

• Completeness: every realizable hardware circuit has a corre-
sponding expression (Section 4.3).

We also prove the soundness and completeness of the type system
of lλ with respect to the translation:

• Soundness: all well-typed expressions are mapped to hardware
circuits (Theorem 4.6).

• Completeness: only well-typed expressions are mapped to hard-
ware circuits (Theorem 4.1).

In combination, these properties imply that all realizable hardware
circuits have corresponding well-typed expressions and that all
well-typed expressions describe realizable hardware circuits.

4.1 Soundness of the translation and completeness of the
type system

Theorem 4.1. If ·; · ` e ⇒ (H, C, O), then ·; · ` e : τ , O B τ , and
C is realizable.

Theorem 4.1 proves both the soundness of the translation with
respect to realizability and the completeness of the type system
with respect to the translation at once. It implies that only well-
typed expressions are mapped to hardware circuits, which are al-
ways realizable. Its proof follows from Propositions 4.3 and 4.5.

Lemma 4.2. If G;D ` e ⇒ (H, C, O), then
(1) |C| ⊂ |G +D + H|,
(2) |O| ⊂ |G +D + H|.

Proof. By induction on the structure of the proof of
G;D ` e ⇒ (H, C, O). The proof does not require that G ∼ Γ
and D ∼ ∆.

Proposition 4.3. If G;D ` e ⇒ (H, C, O) with G ∼ Γ andD ∼ ∆,
then Γ; ∆ ` e : τ and O B τ .

Proof. By induction on the structure of the proof of
G;D ` e ⇒ (H, C, O). The case for the rule ×I uses the premises
O1 B θ1 and O2 B θ2.

Lemma 4.4. If G;D ` e ⇒ (H, C, O) with G ∼ Γ and D ∼ ∆,
then if i ∈ |O|, then o 7→ i 6∈ C.

Proof. By induction on the structure of the proof of
G;D ` e ⇒ (H, C, O).

Proposition 4.5. If G;D ` e ⇒ (H, C, O) with G ∼ Γ andD ∼ ∆,
then C is realizable.

Proof. By induction on the structure of the proof of
G;D ` e ⇒ (H, C, O). The proof reuses the result from the proof
of Proposition 4.3 that all output contexts are well-formed.

4.2 Soundness of the type system
Theorem 4.6. If ·; · ` e : τ , then there exists (H, C, O) such that
·; · ` e ⇒ (H, C, O).

Theorem 4.6 proves the soundness of the type system with
respect to the translation: all well-typed expressions are mapped
to hardware circuits. Its proof follows from Proposition 4.8.

Lemma 4.7. If G ∼ Γ, D ∼ ∆, and G;D ` e ⇒ (H, C, O), then
]{G +D, H}.

Proof. By induction on the structure of the proof of
G;D ` e ⇒ (H, C, O).

360

Proposition 4.8. If Γ; ∆ ` e : τ , then for G ∼ Γ andD ∼ ∆, there
exists (H, C, O) such that G;D ` e ⇒ (H, C, O) and O B τ .

Since the translation uses a declarative style, a strict proof
of Proposition 4.8 requires us to rewrite all the rules in Fig-
ure 5 in an algorithmic style. Instead of rewriting the rules,
we operationally interpret the judgments τ CB (H, I, O) and
G;D ` e ⇒ (H, C, O) to simplify the proof.

For τ CB (H, I, O), we take τ as input and (H, I, O) as out-
put. Since all terminals are eventually introduced by the rule 1CB
(except for those belonging to atomic hardware components), we
assume that each application of the rule 1CB creates fresh identi-
fiers i and o. Then τ CB (H, I, O) implies]{I, S} and]{O, S′}
for any S and S′. (If not, we just generate different identifiers not
found in S and S′.) Thus the proof of Proposition 4.8 assumes that
the last two premises in each of the rules →I , (I , and Fix auto-
matically hold.

For G;D ` e ⇒ (H, C, O), we take G, D, and e as input and
(H, C, O) as output. Since H shares no terminals with G and D
by Lemma 4.7, we further assume that all terminals in H are as-
signed fresh identifiers. That is, given G;D ` e ⇒ (H, C, O), we
assume that]{H, S} holds for any S. (If not, we just generate dif-
ferent identifiers not found in S.) Thus the proof of Proposition 4.8
assumes that the last premise in each of the rules →E , (E , ×I ,
×E automatically holds.

Proof of Proposition 4.8. By induction on the structure of the proof
of Γ; ∆ ` e : τ .

4.3 Completeness of the translation
In order for lλ to be a substitute for netlists, its translation should
be not only sound with respect to realizability, but also com-
plete in the sense that every realizable hardware circuit has a
corresponding expression in lλ. Below we show that lλ is in-
deed expressive enough to describe every realizable hardware
circuit. We assume tuple types θ1 × · · · × θn generalizing prod-
uct types, tuples (e1, · · · , en) generalizing pairs, tuple patterns
(p1, · · · , pn) generalizing pair patterns, and allow tuple patterns in
fixed point expressions and projections (e.g., fix (p1, · · · , pn) :θ. e
and proj e of (p1, · · · , pn) in e′).

Consider a hardware circuitA with n input terminals i1, · · · , in
and m output terminals o1, · · · , om. Here we enumerate all output
terminals belonging to A, but exclude those “hidden” input termi-
nals to which wires are already connected. That is, we consider
only those input terminals exposed to external hardware circuits.
We assume that A is described by an expression

λx1 :1. · · ·λxn :1. e

where xp corresponds to input terminal ip (1 ≤ p ≤ n) and e
has type 1× · · · × 1 whose q-th element corresponds to output
terminal oq (1 ≤ q ≤ m).

We observe that there are two ways to augment A. First we add
a wire connecting an output terminal oq to an input terminal ip. We
describe the resultant hardware circuit by exploiting a fixed point
expression with dummy variables y1, · · · , yq−1, yq+1, · · · , ym:

λx1 :1. · · ·λxp−1 :1. λxp+1 :1. · · ·λxn :1.
fix (y1, · · · , yq−1, xp, yq+1, · · · , ym) :1× · · · × 1. e

Second we combine A with another hardware circuit A′ (without
linking them with wires). Let us assume that A′ is described by

λx′1 :1. · · ·λx′l :1. e′

where x′r corresponds to its r-th input terminal (1 ≤ r ≤ l)
and e′ produces k output terminals. Then A combined with A′ is
described by the following expression:

λx1 :1. · · ·λxn :1. λx′1 :1. · · ·λx′l :1.
proj e of (y1, · · · , ym) in

proj e′ of (y′1, · · · , y′k) in (y1, · · · , ym, y′1, · · · , y′k)

Note that in both cases, the resultant hardware circuit is described
by a function declaring the same number of sharable variables
as the number of input terminals exposed to external hardware
circuits, as is the case for the original hardware circuit A.

Since every hardware circuit is eventually decomposed into
atomic hardware components and connecting wires, it now suffices
to show that each atomic hardware component with n input termi-
nals can be described by a function of the form λx1 :1. · · ·λxn :1. e.
In our case, the problem reduces to converting each constant to such
a function, which is trivial (e.g., and to λx1 :1. λx2 :1. and x1 x2).

5. Discussion
This section presents an alternative translation of lλ and explains
how to eliminate redundant wires in hardware circuits generated
from expressions.

5.1 Mapping variables to wires
The translation of lλ maps variables to connection points which are
hardware components with their own input and output terminals.
Since all input and output terminals belong to some hardware
components, wires are secondary components which have no input
and output terminals of their own and serve only to connect other
hardware components.

An alternative translation of lλ dispenses with connection
points and maps variables directly to wires. The idea is to treat
wires as independent hardware components with their own input
and output terminals. We can obtain such a translation by reusing
the previous translation of lλ with a different interpretation of
pt[i, o] and o 7→ i. Specifically we use pt[i, o] to represent a wire
with input terminal i and output terminal o and a connection con-
straint o 7→ i to specify that o and i be placed at the same physical
location:

pt[i, o] ⇔ o 7→ i ⇔

The new translation is unrealistic, however, because closed ex-
pressions with no variables produce no wires at all. For example,
and zero zero is mapped to a hardware circuit with no wires:

and zero zero
⇒ ({0[o1], 0[o2], and[i1, i2, o]}, {o1 7→ i1, o2 7→ i2}, o)

361

If we again choose to realize connection constraints as wires, it
suffices to interpret pt[i, o] as a wire of zero length, i.e., as a
connection point. Then we obtain the original translation of lλ
given in Section 3.

5.2 Eliminating redundant wires
The translation of lλ ensures that well-typed expressions are al-
ways mapped to realizable hardware circuits, but it sometimes pro-
duces redundant wires if all connection constraints are realized as
wires. For example, (λ̂f :1→1. f zero)ˆreg in Section 3.1 pro-
duces two wires linked via a connection point pt[i1, o1]:

Since the bitstream emitted from output terminal o eventually ar-
rives at input terminal i′, it is safe to merge the two wires into a
single wire directly connecting o to i′:

The merged wire results from eliminating the left wire (connecting
o to i1) and stretching the right wire (connecting o1 to i′) over to
output terminal o. Note that eliminating the right wire and stretch-
ing the left wire does not work in general because multiple wires
can be connected to output terminal o1, as in the following exam-
ple:

If we wish to eliminate such redundant wires, we can treat input
terminals of connection points in the following way. We write o for
the input terminal of a connection point whose output terminal is o.
Now every connection point is written as pt[o, o]:

1 CB (pt[o, o], o, o)
1CB

We realize o 7→ i as a wire connecting o to i as before, but interpret
o 7→ o′ as an equation o = o′, in the presence of which every con-
nection constraint o′ 7→ i is automatically replaced by o 7→ i and
the connection point pt[o′, o′] is removed. Thus o 7→ o′ effectively
superimposes o′ on o and does not produces an otherwise redun-
dant wire.

As an example, (λx :1. and x x) zero in Section 3.1 now pro-
duces a hardware circuit with no redundant wire:

(λx :1. and x x) zero
⇒ ({0[o′], and[i1, i2, o

′′]}, {o′ 7→ i1, o
′ 7→ i2}, o′′)

6. Extension of lλ
As a high-level substitute for netlists, lλ is not intended as a hard-
ware description language in itself. Nevertheless a simple exten-
sion of lλ gives a hardware description language that is expressive
enough to describe non-trivial hardware circuits in a concise way.
This section presents an extension of lλ with polymorphism and an
implementation of a Fast Fourier Transform (FFT) circuit.

6.1 Polymorphism
As in general programming languages, an expression of polymor-
phic type represents a family of expressions of monomorphic type.
In the case of lλ, an expression of monomorphic type describes a
hardware circuit, which in turn implies that an expression of poly-
morphic type describes a family of hardware circuits. These hard-
ware circuits differ only in the number of wires transmitting data
streams and use essentially the same layout of hardware compo-
nents.

We introduce a polymorphic type ∀α.σ where α is a type vari-
able and σ is a metavariable ranging over polymorphic types. For
the sake of simplicity, we restrict α to range over not all monomor-
phic types τ but only sharable types θ. (Letting α range over linear
types κ as well poses no technical difficulty, but does not seem to
be particularly useful.) We use Λα. e for type abstractions and e 〈θ〉
for type applications. In the rule ∀I below, tvar(Γ∪∆) stands for
the set of type variables in Γ and ∆.

sharable type θ ::= · · · | α
polymorphic type σ ::= τ | ∀α.σ

expression e ::= · · · | Λα. e | e 〈θ〉

Γ; ∆ ` e : σ α 6∈ tvar(Γ ∪∆)

Γ; ∆ ` Λα. e : ∀α.σ
∀I

Γ; ∆ ` e : ∀α.σ

Γ; ∆ ` e 〈θ〉 : [θ/α]σ
∀E

Instead of extending the translation of lλ for polymorphic types,
we treat both type abstractions and type applications as metapro-
gramming constructs for generating expressions of monomorphic
type. To be specific, without directly associating hardware circuits
with type abstractions and type applications, we identify a type ap-
plication of the form (Λα. e) 〈θ〉 with [θ/α]e which substitutes θ
for all occurrences of α in e (where we assume that type variable
captures do not arise):

(Λα. e) 〈θ〉 = [θ/α]e

Only when (Λα. e) 〈θ〉 yields an expression of monomorphic type
do we use the translation of lλ to generate a description of a
hardware circuit.

As it provides just a simple form of metaprogramming, poly-
morphism does not add to the expressive power lλ. In conjunction
with linear types, however, polymorphic types enable us to write
various higher-order combinators within lλ itself, thereby greatly
facilitating the design of hardware circuits in which the same pat-
tern of combining hardware components is repeated. A few exam-
ples of such higher-order combinators are given below.

6.2 Example - Fast Fourier Transform
Our implementation of the FFT circuit uses every construct avail-
able in lλ except fixed point expressions. In addition, we use the
following types and expressions all of which can be shown to be
syntactic sugar. We define a sharable type θ2n

inductively on n:

θ2 = θ × θ

θ2n

= θ2n−1
× θ2n−1

(n > 1)

We allow a pattern p in a sharable input function λp :θ. e where p
is either a sharable variable or a pair of patterns:

pattern p ::= x | (p, p)

A linear input function λ̂fn :κ. e uses f exactly n times in e. It has
a linear type κ(n τ which is defined inductively on n:

κ(1 τ = κ(τ
κ(n τ = κ((κ(n−1 τ)

362

twoC : ∀α.(α→α)(2 (α2→α2) = Λα. λ̂f2 :α→α. λ(x, y) :α2. (f x, f y)

prodC : ∀α.(α2→α)(2 (α4→α2) = Λα. λ̂f2 :α2→α. λ((x, y), (z, w)) :α4. (f (x, z), f (y, w))

riffleC : ∀α.(α2→α2)(2 (α4→α4) = Λα. λ̂f2 :α2→α2. λ((x, y), (z, w)) :α4. (f (x, z), f (y, w))

unriffleC : ∀α.(α2→α2)(2 (α4→α4) = Λα. λ̂f2 :α2→α2. λ(p, q) :α4.proj f p of (x, z) in proj f q of (y, w) in ((x, y), (z, w))

riffle1 : c2→c2 = λp :c2. p
riffle2 : c4→c4 = (riffleC 〈c〉)ˆ2riffle1
riffle3 : c8→c8 = (riffleC 〈c2〉)ˆ2riffle2
riffle4 : c16→c16 = (riffleC 〈c4〉)ˆ2riffle3

unriffle1 : c2→c2 = λp :c2. p
unriffle2 : c4→c4 = (unriffleC 〈c〉)ˆ2unriffle1
unriffle3 : c8→c8 = (unriffleC 〈c2〉)ˆ2unriffle2
unriffle4 : c16→c16 = (unriffleC 〈c4〉)ˆ2unriffle3

g1 : c2→c2 = λp :c2. (cplus p, cminus p)
g2 : c4→c4 = twoC 〈c2〉ˆ2g1
g3 : c8→c8 = twoC 〈c4〉ˆ2g2
g4 : c16→c16 = twoC 〈c8〉ˆ2g3

bfly1 : c2→c2 = unriffle1 ◦ g1 ◦ riffle1
bfly2 : c4→c4 = unriffle2 ◦ g2 ◦ riffle2
bfly3 : c8→c8 = unriffle3 ◦ g3 ◦ riffle3
bfly4 : c16→c16 = unriffle4 ◦ g4 ◦ riffle4

prod1 : c2→c = cmult

prod2 : c4→c2 = prodC 〈c〉ˆ2prod1
prod3 : c8→c4 = prodC 〈c2〉ˆ2prod2
prod4 : c16→c8 = prodC 〈c4〉ˆ2prod3

factor1 : c = W 0
2

factor2 : c2 = (W 0
4 , W 1

4)
factor3 : c4 = ((W 0

8 , W 1
8), (W 2

8 , W 3
8))

factor4 : c8 = (((W 0
16, W 1

16), (W 2
16, W 3

16)), ((W 4
16, W 5

16), (W 6
16, W 7

16)))

f1 : c2→c2 = λ(x, y) :c2. bfly1 (x, prod1 (y, factor1))
f2 : c4→c4 = λ(x, y) :c4. bfly2 (x, prod2 (y, factor2))
f3 : c8→c8 = λ(x, y) :c8. bfly3 (x, prod3 (y, factor3))
f4 : c16→c16 = λ(x, y) :c16. bfly4 (x, prod4 (y, factor4))

fft1 : c2→c2 = f1
fft2 : c4→c4 = f2 ◦ (twoC 〈c2〉 f1)
fft3 : c8→c8 = f3 ◦ (twoC 〈c4〉 f2)
fft4 : c16→c16 = f4 ◦ (twoC 〈c8〉 f3)

Figure 6. Fast Fourier Transform in lλ

A linear input application eˆne′ uses e′ as an argument exactly n
times:

eˆ1e′ = eˆe′

eˆne′ = (eˆn−1e′)ˆe′

Thus eˆne′ is an abbreviation of n consecutive linear input appli-
cations which make n syntactic copies of e′. e1◦e2 composes e1 of
type θ′→θ′′ and e2 of type θ→θ′ to yield a sharable input function
of type θ→θ′′:

e1 ◦ e2 = λx :θ. e1 (e2 x)

We use ◦ as a right associative operator.
Figure 6 shows part of the code for an FFT circuit of size 16

which is inspired by the implementation in (Bjesse et al. 1998).
The code consists of a series of declarations each of which yields a
closed expression of lλ. We assume a sharable type c for complex
numbers and three constants cplus, cminus, and cmult, all of type
c2→c, as operators on complex numbers. Twiddle factors W j

i ,
indexed by i and j, are constants of type c.

The code in Figure 6 demonstrates how to use higher-order
combinators of polymorphic type (twoC, prodC, riffleC, and

unriffleC). For example, twoC takes a sharable input function
f of type α→α and applies f to each element of a pair (x, y) of
type α2. Each use of twoC instantiates α to a sharable type (e.g.,
c2, c4, or c8) and requires a sharable input function for f . Without
polymorphic types in lλ, we would have to expand each instance of
twoC into the linear input function given in its declaration. We can
also define ◦ as another higher-order combinator of polymorphic
type

∀α.∀α′.∀α′′.(α′→α′′)(((α→α′)((α→α′′)),

but here we use it as syntactic sugar assuming that the type system
is capable of expanding e1 ◦e2 correctly after inferring the types of
e1 and e2.

The actual code for the FFT circuit is 60 lines long (which in-
cludes additional functions for reordering the output) and expands
to 5158 lines of Verilog code by our prototype translator. We have
also implemented a bitonic sorting network whose code is 43 lines
long and expands to 5175 lines of Verilog code. The generated Ver-
ilog code has been tested for correctness on Aldec’s Active-HDL
simulator.

363

Although polymorphism provides a basic form of metaprogram-
ming in lλ, a practical hardware description language based on
lλ needs additional metaprogramming constructs. For example, the
code in Figure 6 assumes all twiddle factors W j

i as pre-calculated
constants, but a more realistic approach is to calculate these con-
stants at the metaprogramming level (e.g., with a program written
in a general programming language) and then use a metaprogram-
ming construct to import the results. A more general solution is
to design a metaprogramming language that uses lλ as an object
language. Such a metaprogramming language enables us to write
a program that generates the code for an FFT circuit of any given
size by exploiting the regular patterns of composing expressions.
For example, we may think of the code in Figure 6 as the result of
running the program with an input size of 24.

7. Related work
There are several hardware description languages embedded into
existing functional languages. Hydra (O’Donnell 1995), Lava (Bjesse
et al. 1998), Hawk (Matthews et al. 1998), and Wired (Axelsson
et al. 2005) are embedded into Haskell, and HML (Li and Leeser
2000) is embedded into ML. An example of a functional language
designed specifically for hardware design is reFLect (Grundy et al.
2006). As it is capable of constructing and decomposing its own
expressions, we may think of reFLect as a hardware description
language embedded into itself.

A technical problem with embedding a hardware description
language into Haskell is that feedback circuits may give rise to in-
finite data structures for representing netlists because Haskell is a
lazy functional language. As a solution to the problem, O’Donnell
(1993) proposes to add a tag to the datatype representing hard-
ware circuits; Claessen and Sands (1999) propose an extension to
Haskell called observable sharing. Such a problem does not arise
in lλ because it uses a syntax-directed translation and thus never
evaluates expressions.

muFP (Sheeran 1984) is a functional hardware description lan-
guage complete in itself. A characteristic feature of muFP is a small
number of combining forms which are higher-order combinators
that can be applied to primitive or derived functions to build new
functions. Combining forms contain information not only about
operational behavior of hardware circuits (i.e., what they actually
compute) but also about their layout (i.e., how to realize them phys-
ically). Their use enables us to write concise descriptions of hard-
ware circuits that also produce compact layouts when physically
realized, which is the key strength of muFP.

In comparison with muFP, lλ has no combining forms and lacks
the ability to specify the physical layout of hardware circuits, as
its focus is on how to connect hardware components without re-
gard to their relative placement. On the other hand, lλ allows us to
use λx :θ. e and λ̂f :κ. e to directly define new functions, includ-
ing higher-order combinators. If we are concerned only with oper-
ational behavior of hardware circuits, therefore, we can incorporate
combining forms into lλ as constants with appropriate translation
rules. In order to express the physical layout of hardware circuits
in lλ, however, we need to extend the judgment for translating ex-
pressions, which is left as future work.

T-Ruby (Sharp and Rasmussen 1995) is a functional hardware
description language similar to lλ in that its syntax is based on
the standard lambda calculus. Its type system features paramet-
ric polymorphism and dependent product types which enable pro-
grammers to write various higher-order combinators in T-Ruby it-
self. Like its predecessor Ruby (Jones and Sheeran 1990), how-
ever, T-Ruby adopts a relational approach to describing hardware
circuits by modeling a hardware circuit as a relation between two

data streams. Hence it does not explicitly specify the direction of
data flow in hardware circuits.

Although our work is concerned with structural hardware de-
scription, it is worth mentioning that there are functional languages
designed for behavioral hardware synthesis such as SAFL (Mycroft
and Sharp 2000). Ghica (2007) uses Basic SCI (bSCI) (O’Hearn
2003) as a higher-order functional language for hardware synthe-
sis. The affine type system of bSCI prevents functions from sharing
identifiers with their arguments, thereby achieving controlled uses
of hardware circuits that cannot be shared. The linear type system
of lλ also achieves controlled uses of hardware circuits, but in the
context of hardware description (rather than hardware synthesis)
and with a different motivation.

8. Conclusion
We present a variant of the lambda calculus, called lλ, which may
serve as a high-level substitute for netlists. A characteristic feature
of lλ is its use of a linear type system which enforces the linear
use of variables of function type and enables us to use higher-
order functions. We develop a translation of lλ into structural
descriptions of hardware circuits and illustrate the feasibility of
using lλ as a high-level substitute for netlists by implementing a
Fast Fourier Transform circuit.

Although lλ is designed primarily as a high-level substitute for
netlists, developing it into a functional hardware description lan-
guage is certainly feasible. We are considering two directions in
which to extend lλ. The first is to add more metaprogramming con-
structs, which do not increase the expressive power of lλ but sim-
plifies programming tasks. In addition to polymorphism discussed
in Section 6.1, higher-order modules appear to be particularly at-
tractive. The second is to define a new judgment for translating
expressions so as to increase the expressive power of lλ. For ex-
ample, we could extend the syntax of lλ to express such physical
properties of hardware circuits as layout and wiring. Combined to-
gether, these two directions will turn lλ into a practical functional
hardware description language.

Acknowledgments
The authors are grateful to anonymous reviewers for their helpful
comments.

References
Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: wire-

aware circuit design. In Proceedings of Conference on Correct
Hardware Design and Verification Methods (CHARME), volume
3725 of Lecture Notes in Computer Science. Springer Verlag,
2005.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh.
Lava: hardware design in Haskell. In Proceedings of the third
ACM SIGPLAN international conference on Functional pro-
gramming, pages 174–184. ACM Press, 1998.

Raymond T. Boute. Functional languages and their application to
the description of digital systems. Journal A, 25(1):27–33, 1984.

Luca Cardelli and Gordon Plotkin. An algebraic approach to VLSI
design. In Proceedings of the VLSI 81 International Conference,
pages 173–182, 1981.

Koen Claessen and David Sands. Observable sharing for functional
circuit description. In ASIAN ’99: Proceedings of the 5th Asian
Computing Science Conference on Advances in Computing Sci-
ence, pages 62–73. Springer-Verlag, 1999.

Dan R. Ghica. Geometry of synthesis: a structured approach
to VLSI design. In Proceedings of the 34th annual ACM

364

SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 363–375. ACM Press, 2007.

Jim Grundy, Tom Melham, and John O’Leary. A reflective func-
tional language for hardware design and theorem proving. Jour-
nal of Functional Programming, 16(2):157–196, 2006.

Steven D. Johnson. Applicative programming and digital design.
In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 218–227. ACM
Press, 1984.

Geraint Jones and Mary Sheeran. Circuit design in Ruby. Formal
Methods in VLSI Design, pages 13–70, 1990.

Yanbing Li and Miriam Leeser. HML, a novel hardware description
language and its translation to VHDL. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 8(1):1–8, 2000.

John Matthews, Byron Cook, and John Launchbury. Microproces-
sor specification in Hawk. In Proceedings of the 1998 Inter-
national Conference on Computer Languages, page 90. IEEE,
1998.

F. Meshkinpour and Milos D. Ercegovac. A functional language for
description and design of digital systems: sequential constructs.
In Proceedings of the 22nd ACM/IEEE conference on Design
automation, pages 238–244. ACM press, 1985.

Alan Mycroft and Richard Sharp. A statically allocated parallel
functional language. In ICALP ’00: Proceedings of the 27th In-
ternational Colloquium on Automata, Languages and Program-
ming, pages 37–48. Springer-Verlag, 2000.

John J. O’Donnell. From transistors to computer architecture:
Teaching functional circuit specification in Hydra. In Proceed-
ings of the First International Symposium on Functional Pro-
gramming Languages in Education, pages 195–214. Springer-
Verlag, 1995.

John T. O’Donnell. Generating netlists from executable circuit
specifications. In Proceedings of the 1992 Glasgow Workshop
on Functional Programming, pages 178–194. Springer-Verlag,
1993.

Peter O’Hearn. On bunched typing. Journal of Functional Pro-
gramming, 13(4):747–796, 2003.

Robin Sharp and Ole Rasmussen. Using a language of functions
and relations for VLSI specification. In Proceedings of the
seventh international conference on Functional programming
languages and computer architecture, pages 45–54. ACM Press,
1995.

Mary Sheeran. Hardware design and functional programming: a
perfect match. The Journal of Universal Computer Science, 11
(7):1135–1158, 2005.

Mary Sheeran. muFP, a language for VLSI design. In Proceedings
of the 1984 ACM Symposium on LISP and functional program-
ming, pages 104–112. ACM Press, 1984.

365

