
Chapter 1

Inductive Definitions

This chapter discusses inductive definitions which are an indispensable tool in the study of programming
languages. The reason why we need inductive definitions is not difficult to guess: a programming
language may be thought of a system that is inhabited by infinitely many elements (or programs), and
we wish to give a complete specification of it with a finite description; hence we need a mechanism of
inductive definition by which a finite description is capable of yielding an infinite number of elements
in the system. Those techniques related to inductive definitions also play a key role in investigating
properties of programming languages. We will study these concepts with a few simple languages.

1.1 Inductive definitions of syntactic categories

An integral part of the definition of a programming language is its syntax which answers the question
of which program (i.e., a sequence of characters) is recognizable by the parser and which program is
not. Typically the syntax is specified by a number of syntactic categories such as expressions, types, and
patterns. Below we discuss how to define syntactic categories inductively in a few simple languages.

Our first example defines a syntactic category nat of natural numbers:

nat n ::= O | S n

Here nat is the name of the syntactic category being defined, and n is called a non-terminal. We read
::= as “is defined as” and | as “or.” O stands for “zero” and S “successor.” Thus the above definition is
interpreted as:

A natural number n is either O or S n′ where n′ is another natural number.

Note that nat is defined inductively: a natural number S n′ uses another natural number n′, and thus
nat uses the same syntactic category in its definition. Now the definition of nat produces an infinite
collection of natural numbers such as

O, S O, S S O, S S S O, S S S O, · · · .

Thus nat specifies a language of natural numbers.
A syntactic category may refer to another syntactic category in its definition. For example, given the

above definition of nat, the syntactic category tree below uses nat in its inductive definition:

tree t ::= leaf n | node (t, n, t)

leaf n represents a leaf node with a natural number n; node (t1, n, t2) represents an internal node with
a natural number n, a left child t1, and a right child t2. Then tree specifies a language of regular binary
trees of natural numbers such as

leaf n, node (leaf n1, n, leaf n2), node (node (leaf n1, n, leaf n2), n′, leaf n′′), · · · .

1

A similar but intrinsically different example is two syntactic categories that are mutually inductively
defined. For example, we simultaneously define two syntactic categories even and odd of even and odd
numbers as follows:

even e ::= O | S o
odd o ::= S e

According to the definition above, even consists of even numbers such as

O, S S O, S S S S O, · · ·

whereas odd consists of odd numbers such as

S O, S S S O, S S S S S O, · · · .

Note that even and odd are subcategories of nat because every even number e or odd number o is also a
natural number. Thus we may think of even and odd as nat satisfying certain properties.

Let us consider another example of defining a syntactic subcategory. First we define a syntactic
category paren of strings of parentheses:

paren s ::= ε | (s |)s

ε stands for the empty string (i.e., εs = s = sε). paren specifies a language of strings of parentheses with
no constraint on the use of parentheses. Now we define a subcategory mparen of paren for those strings
of matched parentheses:

mparen s ::= ε | (s) | s s

mparen generates such strings as

ε , () , ()() , (()) , (())() , ()()() , · · · .

mparen is ambiguous in the sense that a string belonging to mparen may not be decomposed in a
unique way (according to the definition of mparen). For example, ()()() may be thought of as either ()()
concatenated with () or () concatenated with ()(). The culprit is the third case s s in the definition: for
a sequence of substrings of matched parentheses, there can be more than one way to split it into two
substrings of matched parentheses. An alternative definition of lparen below eliminates ambiguity in
mparen:

lparen s ::= ε | (s) s

The idea behind lparen is that the first parenthesis in a non-empty string s is a left parenthesis “(” which
is paired with a unique occurrence of a right parenthesis “)”. For example, s = (())() can be written
as (s1)s2 where s1 = () and s2 = (), both strings of matched parentheses, are uniquely determined by
s. ()) and (()(), however, are not strings of matched parentheses and cannot be written as (s1)s2 where
both s1 and s2 are strings of matched parentheses.

An inductive definition of a syntactic category is a convenient way to specify a language. Even the
syntax of a full-scale programming language (such as SML) uses essentially the same machinery. It is,
however, not the best choice for investigating properties of languages. For example, how can we formally
express that n belongs to nat if S n belongs to nat, let alone prove it? Or how can we show that a string
belonging to mparen indeed consists of matched parentheses? The notion of judgment comes into play
to address such issues arising in inductive definitions.

1.2 Inductive definitions of judgments

A judgment is an object of knowledge, or simply a statement, that may or may not be provable. Here
are a few examples:

• “1− 1 is equal to 0” is a judgment which is always provable.

• “1 + 1 is equal to 0” is also a judgment which is never provable.

• “It is raining” is a judgment which is sometimes provable and sometimes not.

2 May 15, 2007

• “S S O belongs to the syntactic category nat” is a judgment which is provable if nat is defined as
shown in the previous section.

Then how do we prove a judgment? For example, on what basis do we assert that “1 − 1 is equal to
0” is always provable? We implicitly use arithmetic to prove “1 − 1 is equal to 0”, but strictly speaking,
arithmetic rules are not given for free — we first have to reformulate them as inference rules.

An inference rule consists of premises and a conclusion, and is written in the following form (where
J stands for a judgment):

J1 J2 · · · Jn

J
R

The inference rule, whose name is R, states that if J1 through Jn (premises) hold, then J (conclusion)
also holds. As a special case, an inference rule with no premise (i.e., n = 0) is called an axiom. Here are
a few examples of inference rules and axioms where we omit their names:

m is equal to l l is equal to n

m is equal to n

m is equal to n

m + 1 is equal to n + 1

n is equal to n 0 is a natural number
My coat is wet

It is raining

Judgments are a general concept that covers any form of knowledge: knowledge about weather,
knowledge about numbers, knowledge about programming languages, and so on. Note that judg-
ments alone are inadequate to justify the knowledge being conveyed — we also need inference rules
for proving or refuting judgments. In other words, the definition of a judgment is complete only when
there are inference rules for proving or refuting it. Without inference rules, there can be no meaning in the
judgment. For example, without arithmetic rules, the statement “1−1 is equal to 0” is nothing more than
nonsense and thus cannot be called a judgment.

Needless to say, judgments are a concept strong enough to express membership in a syntactic cate-
gory. As an example, let us recast the inductive definition of nat as a system of judgments and inference
rules. We first introduce a judgment n nat:

n nat ⇔ n is a natural number

We use the following two inference rules to prove the judgment n nat where their names, Zero and Succ,
are displayed:

O nat Zero n nat
S n nat Succ

n in the rule Succ is called a metavariable which is just a placeholder for another sequence of O and
S and is thus not part of the language consisting of O and S . That is, n is just a (meta)variable which
ranges over the set of sequences of O and S ; n itself (before being replaced by S O, for example) is not
tested for membership in nat.

The notion of metavariable is similar to the notion of variable in SML. Consider an SML expression
x = 1 where x is a variable of type int . The expression makes sense only because we read x as a
variable that ranges over integer values and is later to be replaced by an actual integer constant. If
we literally read x as an (ill-formed) integer, x = 1 would always evaluate to false because x , as an
integer constant, is by no means equal to another integer constant 1.

The judgment n nat is now defined inductively by the two inference rules. The rule Zero is a base
case because it is an axiom, and the rule Succ is an inductive case because the premise contains a judg-
ment smaller in size than the one (of the same kind) in the conclusion. Now we can prove, for example,
that S S O nat holds with the following derivation tree, in which S S O nat is the root and O nat is the only
leaf (i.e., it is an inverted tree):

O nat Zero
S O nat Succ
S S O nat Succ

Similarly we can rewrite the definition of the syntactic category tree in terms of judgments and inference
rules:

t tree ⇔ t is a regular binary tree of natural numbers

May 15, 2007 3

n nat
leaf n tree

Leaf
t1 tree n nat t2 tree

node (t1, n, t2) tree
Node

A slightly more complicated example is a judgment that isolates full regular binary trees of natural
numbers, as shown below. Note that there is no restriction on the form of judgment as long as its
meaning is clarified by inference rules. We may even use English sentences as a valid form of judgment!

t ctree〈d〉 ⇔ t is a full regular binary tree of natural numbers of depth d

n nat
leaf n ctree〈O〉

Cleaf
t1 ctree〈d〉 n nat t2 ctree〈d〉

node (t1, n, t2) ctree〈S d〉 Cnode

The following derivation tree proves that

O

O

O O

O

O O

is a full regular binary tree of depth S S O:

O nat Zero

leaf O ctree〈O〉
Cleaf

O nat Zero
O nat Zero

leaf O ctree〈O〉
Cleaf

node (leaf O, O, leaf O) ctree〈S O〉 Cnode
O nat (omitted)

node (node (leaf O, O, leaf O), O, node (leaf O, O, leaf O)) ctree〈S S O〉
Cnode

We can also show that t = node (leaf O, O, node (leaf O, O, leaf O)) is not a full regular binary tree as
we cannot prove t ctree〈d〉 for any natural number d:

O nat d′ = O
leaf O ctree〈d′〉

Cleaf
O nat Zero

· · · d′ = S d′′

node (leaf O, O, leaf O) ctree〈d′〉 Cnode

node (leaf O, O, node (leaf O, O, leaf O)) ctree〈S d′〉 Cnode

It is easy to see why the proof fails: the left subtree of t requires d′ = O while the right subtree of t
requires d′ = S d′′, and there is no way to solve two conflicting equations on d′.

As with the syntactic categories even and odd, multiple judgments can be defined simultaneously.
For example, here is the translation of the definition of even and odd into judgments and inference rules:

n even ⇔ n is an even number
n odd ⇔ n is an odd number

O even ZeroE n odd
S n even SuccE

n even
S n odd

SuccO

The following derivation tree proves that S S O is an even number:

O even ZeroE

S O odd
SuccO

S S O even SuccE

Exercise 1.1. Translate the definition of paren, mparen, and lparen into judgments and inference rules.

1.3 Derivable rules and admissible rules

As shown in the previous section, judgments are defined with a certain (fixed) number of inference
rules. When put together, these inference rules justify new inference rules which may in turn be added
to the system. The new inference rules do not change the characteristics of the system because they can
all be justified by the original inference rules, but may considerably facilitate the study of the system.

4 May 15, 2007

For example, when multiplying two integers, we seldom employ the basic arithmetic rules, which can
be thought of as original inference rules; instead we mostly use the rules of the multiplication table,
which can be thought of as new inference rules.

There are two ways to introduce new inference rules: as derivable rules and as admissible rules. A
derivable rule is one in which the gap between the premise and the conclusion can be bridged by a
derivation tree. In other words, there always exists a sequence of inference rules that use the premise
to prove the conclusion. As an example, consider the following inference rule which states that if n is a
natural number, so is S S n:

n nat
S S n nat Succ2

The rule Succ2 is derivable because we can justify it with the following derivation tree:

n nat
S n nat Succ
S S n nat Succ

Now we may use the rule Succ2 as if it was an original inference rule; when asked to justify its use, we
can just present the above derivation tree.

An admissible rule is one in which the premise implies the conclusion. That is, whenever the
premise holds, so does the conclusion. A derivable rule is certainly an admissible rule because of the
derivability of the conclusion from the premise. There are, however, admissible rules that are not deriv-
able rules. (Otherwise why would we distinguish between derivable and admissible rules?) Consider
the following inference rule which states that if S n is a natural number, so is n:

S n nat
n nat Succ−1

First observe that the rule Succ−1 is not derivable: the only way to derive n nat from S n nat is by the
rule Succ, but the premise of the rule Succ is smaller than its conclusion whereas S n nat is larger than
n nat. That is, there is no derivation tree like

S n nat
...

Succ

n nat Succ .

Now suppose that the premise S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat as follows:

...
n nat
S n nat Succ

Then we can extract a smaller derivation tree
...

n nat
which proves n nat. Hence the rule Succ−1 is

justified as an admissible rule.
An important property of derivable rules is that they remain valid even when the system is aug-

mented with new inference rules. For example, the rule Succ2 remains valid no matter how many
new inference rules are added to the system because the derivation of S S n nat from n nat is always
possible thanks to the rule Succ (which is not removed from the system). In contrast, admissible rules
may become invalid when new inference rules are introduced. For example, suppose that the system
introduces a new (bizarre) inference rule:

n tree
S n nat Bizarre

The rule Bizarre invalidates the previously admissible rule Succ−1 because the rule Succ is no longer
the only way to prove S n nat and thus S n nat fails to guarantees n nat. Therefore the validity of an
admissible rule must be checked each time a new inference rule is introduced.

Exercise 1.2. Is the rule
n even

S S n even SuccE 2 derivable or admissible? What about the rule S S n even
n even SuccE−2 ?

May 15, 2007 5

1.4 Inductive proofs

We have learned how to specify systems using inductive definitions of syntactic categories or judg-
ments, or inductive systems of syntactic categories or judgments. While it is powerful enough to specify
even full-scale programming languages (i.e., their syntax and semantics), the mechanism of inductive
definition alone is hardly useful unless the resultant system is shown to exhibit desired properties. That
is, we cannot just specify a system using an inductive definition and then immediately use it without
proving any interesting properties. For example, our intuition says that every string in the syntactic
category mparen has the same number of left and right parentheses, but the definition of mparen itself
does not automatically prove this property; hence we need to formally prove this property ourselves in
order to use mparen as a language of strings of matched parentheses. As another example, consider the
inductive definition of the judgments n even and n odd. The definition seems to make sense, but it still
remains to formally prove that n in n even indeed represents an even number and n in n odd an odd
number.

There is another important reason why we need to be able to prove properties of inductive systems.
An inductive system is often so complex that its soundness, i.e. its definition being devoid of any
inconsistencies, may not be obvious at all. In such a case, we usually set out to prove a property that
is supposed to hold in the system. Then each flaw in the definition that destroys the property, if any,
manifests itself at some point in the proof (because it is impossible to complete the proof). For example,
an expression in a functional language is supposed to evaluate to a value of the same type, but this
property (called type preservation) is usually not obvious at all. By attempting to prove type preservation,
we can either locate flaws in the definition or partially ensure that the system is sound. Thus proving
properties of an inductive system is the most effective aid in fixing errors in the definition.

First we will study a principle called structural induction for proving properties of inductive systems
of syntactic categories. Next we will study another principle called rule induction for proving properties
of inductive systems of judgments. Since an inductive system of syntactic category is a simplified
presentation of a corresponding inductive system of judgments, structural induction is in fact a special
case of rule induction. Nevertheless structural induction deserves separate treatment because of the
role of syntactic categories in the study of programming languages.

1.4.1 Structural induction

The principle of structural induction states that a property of a syntactic category may be proven induc-
tively by analyzing the structure of its definition: for each base case, we show that the property holds
without making any assumption; for each inductive case, we first assume that the property holds for
each smaller element in it and then prove the property holds for the entire case.

A couple of examples will clarify the concept. Consider the syntactic category nat of natural num-
bers. We wish to prove that P (n) holds for every natural number n. Examples of P (n) are:

• n has a successor.

• n is O or has a predecessor n′ (i.e., S n′ = n).

• n is a product of prime numbers (where definitions of products and prime numbers are assumed
to be given).

By structural induction, we prove the following two statements:

• P (O) holds.

• If P (n) holds, then P (S n) also holds.

The first statement is concerned with the base case in which O has no smaller element in it; hence we
prove P (O) without any assumption. The second statement is concerned with the inductive case in
which S n has a smaller element n in it; hence we first assume, as an induction hypothesis, that P (n)
holds and then prove that P (S n) holds. The above instance of structural induction is essentially the
same as the principle of mathematical induction.

As another example, consider the syntactic category tree of regular binary trees. In order to prove
that P (t) holds for every regular binary tree t, we need to prove the following two statements:

6 May 15, 2007

• P (leaf n) holds.

• If P (t1) and P (t2) hold as induction hypotheses, then P (node (t1, n, t2)) also holds.

The above instance of structural induction is usually called tree induction.
As a concrete example of an inductive proof by structural induction, let us prove that every string

belonging to the syntactic category mparen has the same number of left and right parentheses. (Note
that we are not proving that mparen specifies a language of strings of matched parentheses.) We first
define two auxiliary functions left and right to count the number of left and right parentheses. For
visual clarity, we write left [s] and right [s] instead of left(s) and right(s). (We do not define left and right
on the syntactic category paren because the purpose of this example is to illustrate structural induction
rather than to prove an interesting property of mparen.)

left [ε] = 0
left [(s)] = 1 + left [s]

left [s1 s2] = left [s1] + left [s2]
right [ε] = 0

right [(s)] = 1 + right [s]
right [s1 s2] = right [s1] + right [s2]

Now let us interpret P (s) as “left [s] = right [s].” Then we want to prove that if s belongs to mparen,
written as s ∈ mparen, then P (s) holds.

Theorem 1.3. If s ∈ mparen, then left [s] = right [s].

Proof. By structural induction on s.
Each line below corresponds to a single step in the proof. It is written in the following format:

conclusion justification

This format makes it easy to read the proof because in most cases, we want to see the conclusion first
rather than its justification.

Case s = ε:
left [ε] = 0 = right [ε]

Case s = (s′):
left [s′] = right [s′] by induction hypothesis on s′

left [s] = 1 + left [s′] = 1 + right [s′] = right [s] from left [s′] = right [s′]

Case s = s1 s2:
left [s1] = right [s1] by induction hypothesis on s1

left [s2] = right [s2] by induction hypothesis on s2

left [s1 s2] = left [s1] + left [s2] = right [s1] + right [s2] = right [s1 s2]
from left [s1] = right [s1] and left [s2] = right [s2]

In the proof above, we may also say “by induction on the structure of s” instead of “by structural
induction on s.”

1.4.2 Rule induction

The principle of rule induction is similar to the principle of structural induction except that it is applied
to derivation trees rather than definitions of syntactic categories. Consider an inductive definition of a
judgment J with two inference rules:

Jb
Rbase

J1 J2 · · · Jn

Ji
Rind

May 15, 2007 7

We want to show that whenever J holds, another judgment P (J) holds where P (J) is a new form of
judgment parameterized over J . For example, when J is “n nat”, P (J) may be “either n even or n odd.”
To this end, we prove the following two statements:

• P (Jb) holds.

• If P (J1), P (J2), · · · , and P (Jn) hold as induction hypotheses, then P (Ji) holds.

By virtue of the first statement, the following inference rule makes sense because we can always prove
P (Jb):

P (Jb)
R′

base

The following inference rule also makes sense because of the second statement: it states that if P (J1)
through P (Jn) hold, then P (Ji) also holds, which is precisely what the second statement proves:

P (J1) P (J2) · · · P (Jn)
P (Ji)

R′
ind

Now, for any derivation tree for J using the rules Rbase and Rind, we can prove P (J) using the rules
R′

base and R′
ind:

Jb
Rbase =⇒ P (Jb)

R′
base

...
J1

...
J2

· · ·
...

Jn

Ji
Rind

=⇒

...
P (J1)

...
P (J2)

· · ·
...

P (Jn)

P (Ji)
R′

ind

In other words, J always implies P (J). A generalization of the above strategy is the principle of rule
induction.

As a trivial example, let us prove that n nat implies either n even or n odd. We let P (n nat) be “either
n even or n odd” and apply the principle of rule induction. The two rules Zero and Succ require us to
prove the following two statements:

• P (O nat) holds. That is, for the case where the rule Zero is used to prove n nat, we have n = O and
thus prove P (O nat).

• If P (n′ nat) holds, P (S n′ nat) holds. That is, for the case where the rule Succ is used to prove
n nat, we have n = S n′ and thus prove P (S n′ nat) using the induction hypothesis P (n′ nat).

According to the definition of P (J), the two statements are equivalent to:

• Either O even or O odd holds.

• If either n′ even or n′ odd holds, then either S n′ even or S n′ odd holds.

A formal inductive proof proceeds as follows:

Theorem 1.4. If n nat, then either n even or n odd.

Proof. By rule induction on the judgment n nat.
It is of utmost importance that we apply the principle of rule induction to the judgment n nat rather

than the natural number n. In other words, we analyze the structure of the proof of n nat, not the struc-
ture of n. If we analyze the structure of n, the proof degenerates to an example of structural induction!
Hence we may also say “by induction on the structure of the proof of n nat” instead of “by rule induc-
tion on the judgment n nat.”

Case O nat Zero (where n happens to be equal to O):
(This is the case where n nat is proven by applying the rule Zero. It is not obtained as a case where n is
equal to O, since we are not analyzing the structure of n. Note also that we do not apply the induction
hypothesis because the premise has no judgment.)

8 May 15, 2007

O even by the rule ZeroE

Case
n′ nat
S n′ nat

Succ (where n happens to be equal to S n′):

(This is the case where n nat is proven by applying the rule Succ.)
n′ even or n′ odd by induction hypothesis
S n′ odd or S n′ even by the rule SuccO or SuccE

Rule induction can also be applied simultaneously to two or more judgments. As an example, let us
prove that n in n even represents an even number and n in n odd an odd number. We use the rules ZeroE ,
SuccE , and SuccO in Section 1.2 along with the following inference rules using a judgment n double n′:

O double O
Dzero

n double n′

S n double S S n′
Dsucc

Intuitively n double n′ means that n′ is a double of n (i.e., n′ = 2 × n). The properties of even and odd
numbers are stated in the following theorem:

Theorem 1.5.
If n even, then there exists n′ such that n′ double n.
If n odd, then there exist n′ and n′′ such that n′ double n′′ and S n′′ = n.

The proof of the theorem follows the same pattern of rule induction as in previous examples except
that P (J) distinguishes between the two cases J = n even and J = n odd:

• P (n even) is “there exists n′ such that n′ double n.”

• P (n odd) is “there exist n′ and n′′ such that n′ double n′′ and S n′′ = n.”

An inductive proof of the theorem proceeds as follows:

Proof of Theorem 1.5. By simultaneous rule induction on the judgments n even and n odd.

Case O even ZeroE where n = O:
O double O by the rule Dzero
We let n′ = O.

Case
np odd

S np even SuccE where n = S np:

n′p double n′′p and S n′′p = np by induction hypothesis
S n′p double S S n′′p by the rule Dsucc with n′p double n′′p
S n′p double n from S S n′′p = S np = n
We let n′ = S n′p.

Case
np even

S np odd
SuccO where n = S np:

n′p double np by induction hypothesis
We let n′ = n′p and n′′ = np from n = S np

1.5 Techniques for inductive proofs

An inductive proof is not always as straightforward as the proof of Theorem 1.4. For example, the
theorem being proven may be simply false! In such a case, the proof attempt (which will eventually
fail) may help us to extract a counterexample of the theorem. If the theorem is indeed provable (or is
believed to be provable) but a direct proof attempt fails, we can try a common technique for inductive
proofs. Below we illustrate three such techniques: introducing a lemma, generalizing the theorem, and
proving by the principle of inversion.

May 15, 2007 9

1.5.1 Using a lemma

We recast the definition of the syntactic categories mparen and lparen as a system of judgments and
inference rules:

ε mparen Meps
s mparen

(s) mparen
Mpar s1 mparen s2 mparen

s1 s2 mparen Mseq

ε lparen
Leps

s1 lparen s2 lparen

(s1) s2 lparen
Lseq

Our goal is to show that s mparen implies s lparen. It turns out that a direct proof attempt by rule
induction fails and that we need a lemma. To informally explain why we need a lemma, consider
the case where the rule Mseq is used to prove s mparen. We may write s = s1 s2 with s1 mparen and
s2 mparen. By induction hypothesis on s1 mparen and s2 mparen, we may conclude s1 lparen and s2 lparen.
From s1 lparen, there are two subcases to consider:

• If s1 = ε, then s = s1 s2 = s2 and s2 lparen implies s lparen.

• If s1 = (s′1) s′′1 with s′1 lparen and s′′1 lparen, then s = (s′1) s′′1 s2.

In the second subcase, it is necessary to prove s′′1 s2 lparen from s′′1 lparen and s2 lparen, which is not
addressed by what is being proven (and is not obvious). Thus the following lemma needs to be proven
first:

Lemma 1.6. If s lparen and s′ lparen, then s s′ lparen.

Then how do we prove the above lemma by rule induction? The lemma does not seem to be provable
by rule induction because it does not have the form “If J holds, then P (J) holds” — the If part contains
two judgments! It turns out, however, that rule induction can be applied exactly in the same way. The
trick is to interpret the statement in the lemma as:

If s lparen, then s′ lparen implies s s′ lparen.

Then we apply rule induction to the judgment s lparen with P (s lparen) being “s′ lparen implies s s′ lparen.”
An inductive proof of the lemma proceeds as follows:

Proof of Lemma 1.6. By rule induction on the judgment s lparen. Keep in mind that the induction hypoth-
esis on s lparen yields “s′ lparen implies s s′ lparen.” Consequently, if s′ lparen is already available as an
assumption, the induction hypothesis on s lparen yields s s′ lparen.

Case ε lparen
Leps where s = ε:

s′ lparen assumption
s s′ = ε s′ = s′

s s′ lparen from s′ lparen

Case
s1 lparen s2 lparen

(s1) s2 lparen
Lseq where s = (s1) s2:

s′ lparen assumption
s s′ = (s1) s2 s′

“s′ lparen implies s2 s′ lparen” by induction hypothesis on s2 lparen
s2 s′ lparen from the assumption s′ lparen
(s1) s2 s′ lparen by the rule Lseq with s1 lparen and s2 s′ lparen

Exercise 1.7. Can you prove Lemma 1.6 by rule induction on the judgment s′ lparen?

Now we are ready to prove that s mparen implies s lparen.

Theorem 1.8. If s mparen, then s lparen.

10 May 15, 2007

Proof. By rule induction on the the judgment s mparen.

Case ε mparen Meps where s = ε:
ε lparen by the rule Leps

Case
s′ mparen

(s′) mparen
Mpar where s = (s′):

s′ lparen by induction hypothesis

(s′) lparen from s′ lparen ε lparen
Leps

(s′) ε lparen
Lseq and (s′) = (s′) ε

Case
s1 mparen s2 mparen

s1 s2 mparen Mseq where s = s1 s2:
s1 lparen by induction hypothesis on s1 mparen
s2 lparen by induction hypothesis on s2 mparen
s1 s2 lparen by Lemma 1.6

1.5.2 Generalizing a theorem

We have seen in Theorem 1.3 that if a string s belongs to the syntactic category mparen, or if s mparen
holds, s has the same number of left and right parentheses, i.e., left [s] = right [s]. The result, however,
does not prove that s is a string of matched parentheses because it does not take into consideration
positions of matching parentheses. For example, s =)(satisfies left [s] = right [s], but is not a string of
matched parentheses because the left parenthesis appears after its corresponding right parenthesis.

In order to be able to recognize strings of matched parentheses, we introduce a new judgment k � s
where k is a non-negative integer:

k � s ⇔ k left parentheses concatenated with s form a string of matched parentheses
⇔ ((· · · (︸ ︷︷ ︸

k

s is a string of matched parentheses

The idea is that we scan a given string from left to right and keep counting the number of left parenthe-
ses that have not yet been matched with corresponding right parentheses. Thus we begin with k = 0,
increment k each time a left parenthesis is encountered, and decrement k each time a right parenthesis
is encountered:

0 � ε
Peps

k + 1 � s

k � (s
Pleft k − 1 � s k > 0

k �)s
Pright

The second premise k > 0 in the rule Pright ensures that in any prefix of a given string, the number of
right parentheses may not exceed the number of left parentheses. Now a judgment 0 � s expresses that
s is a string of matched parentheses. Here are a couple of examples:

0 � ε
Peps 1 > 0
1 �)

Pright
2 > 0

2 �))
Pright

1 � ())
Pleft

0 � (())
Pleft

(the rule Pright is not applicable because 0 6> 0)
0 �)(
1 �))(

Pright

0 � ())(
Pleft

Note that while an inference rules is usually read from the premise to the conclusion, i.e., “if the
premise holds, then the conclusion follows,” the above rules are best read from the conclusion to the
premise: “in order to prove the conclusion, we prove the premise instead.” For example, the rule Peps
may be read as “in order to prove 0 � ε, we do not have to prove anything else,” which implies that
0 � ε automatically holds; the rule Pleft may be read as “in order to prove k � (s, we only have to prove
k + 1 � s.” This bottom-up reading of the rules corresponds to the left-to-right direction of scanning a
string. For example, a proof of 0� (()) would proceed as the following sequence of judgments in which
the given string is scanned from left to right:

0 � (()) −→ 1 � ()) −→ 2 �)) −→ 1 �) −→ 0 � ε

May 15, 2007 11

Exercise 1.9. Rewrite the inference rules for the judgment k � s so that they are best read from the
premise to the conclusion. Show that the top-down reading corresponds to the right-to-left direction of
scanning a string.

Now we wish to prove that a string s satisfying 0�s indeed belongs to the syntactic category mparen:

Theorem 1.10. If 0 � s, then s mparen.

It is easy to see that a direct proof of Theorem 1.10 by rule induction fails. For example, when 0 � (s
follows from 1� s by the rule Pleft , we cannot apply the induction hypothesis to the premise because it
does not have the form 0 � s′. What we need is, therefore, a generalization of Theorem 1.10 that covers
all cases of the judgment k � s instead of a particular case k = 0:

Lemma 1.11. If k � s, then ((· · · (︸ ︷︷ ︸
k

s mparen.

Lemma 1.11 formally verifies the intuition behind the general form of the judgment k � s. Then Theo-
rem 1.10 is obtained as a corollary of Lemma 1.11.

The proof of Lemma 1.11 requires another lemma whose proof is left as an exercise (see Exer-
cise 1.17):

Lemma 1.12. If ((· · · (︸ ︷︷ ︸
k

s mparen, then ((· · · (︸ ︷︷ ︸
k

()s mparen.

Proof of Lemma 1.11. By rule induction on the judgment k � s.

Case 0 � ε
Peps where k = 0 and s = ε:

ε mparen by the rule Meps
((· · · (︸ ︷︷ ︸

k

s mparen from ((· · · (︸ ︷︷ ︸
k

s = ε

Case
k + 1 � s′

k � (s′
Pleft where s = (s′:

((· · · (︸ ︷︷ ︸
k+1

s′ mparen by induction hypothesis on k + 1 � s′

((· · · (︸ ︷︷ ︸
k

s mparen from ((· · · (︸ ︷︷ ︸
k+1

s′ = ((· · · (︸ ︷︷ ︸
k

(s′ = ((· · · (︸ ︷︷ ︸
k

s

Case
k − 1 � s′ k > 0

k �)s′
Pright where s =)s′:

((· · · (︸ ︷︷ ︸
k−1

s′ mparen by induction hypothesis on k − 1 � s′

((· · · (︸ ︷︷ ︸
k−1

()s′ mparen by Lemma 1.12

((· · · (︸ ︷︷ ︸
k

s mparen from ((· · · (︸ ︷︷ ︸
k−1

()s′ = ((· · · (︸ ︷︷ ︸
k

)s′ = ((· · · (︸ ︷︷ ︸
k

s

It is important that generalizing a theorem is different from introducing a lemma. We introduce
a lemma when the induction hypothesis is applicable to all premises in an inductive proof, but the
conclusion to be drawn is not a direct consequence of induction hypotheses. Typically such a lemma,
which fills the gap between induction hypotheses and the conclusion, requires another inductive proof
and is thus proven separately. In contrast, we generalize a theorem when the induction hypothesis is
not applicable to some premises and an inductive proof does not even work. Introducing a lemma is
to no avail here, since the induction hypothesis is applicable only to premises of inference rules and
nothing else (e.g., judgments proven by a lemma). Thus we generalize the theorem so that a direct
inductive proof works. (The proof of the generalized theorem may require us to introduce a lemma, of
course.)

To generalize a theorem is essentially to find a theorem that is harder to prove than, but immedi-
ately implies the original theorem. (In this regard, we can also say that we “strengthen” the theorem.)

12 May 15, 2007

There is no particular recipe for generalizing a theorem, and some problem requires a deep insight into
the judgment to which the induction hypothesis is to be applied. In many cases, however, identify-
ing an invariant on the judgment under consideration gives a clue on how to generalize the theorem.
For example, Theorem 1.10 deals with a special case of the judgment k � s, and its generalization in
Lemma 1.11 precisely expresses what the judgment k � s means.

1.5.3 Proof by the principle of inversion

Consider an inference rule
J1 J2 · · · Jn

J
R . In order to apply the rule R, we first have to establish

proofs of all the premises J1 through Jn, from which we may judge that the conclusion J also holds.
An alternative way of reading the rule R is that in order to prove J , it suffices to prove J1, · · · , Jn. In
either case, it is the premises, not the conclusion, that we have to prove first.

Now assume the existence of a proof of the conclusion J . That is, we assume that J is provable,
but we may not have a concrete proof of it. Since the rule R is applied in the top-down direction, the
existence of a proof of J does not license us to conclude that the premises J1, · · · , Jn are also provable.

For example, there may be another rule, say
J ′

1 J ′
2 · · · Jm

J
R′ , that deduces the same conclusion,

but using different premises. In this case, we cannot be certain that the rule R has been applied at the
final step of the proof of J , and the existence of proofs of J1, · · · , Jn is not guaranteed.

If, however, the rule R is the only way to prove the conclusion J , we may safely “invert” the rule R
and deduce the premises J1, · · · , Jn from the existence of a proof of J . That is, since the rule R is the
only way to prove J , the existence of a proof of J is subject to the existence of proofs of all the premises
of the rule R. Such a use of an inference rule in the bottom-up direction is called the principle of inversion.

As an example, let us prove that if S n is a natural number, so is n:

Proposition 1.13. If S n nat, then n nat.

We begin with an assumption that S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat by the principle of inversion:

n nat
S n nat Succ

Thus there must be a proof of n nat whenever there exists a proof of S n nat, which completes the proof
of Proposition 1.13.

1.6 Exercises

Exercise 1.14. Suppose that we represent a binary number as a sequence of digits 0 and 1. Give an
inductive definition of a syntactic category bin for positive binary numbers without a leading 0. For
example, 10 belongs to bin whereas 00 does not. Then define a function num which takes a sequence
b belonging to bin and returns its corresponding decimal number. For example, we have num(10) = 2
and num(110) = 6. You may use ε for the empty sequence.

Exercise 1.15. Prove the converse of Theorem 1.8: if s lparen, then s mparen.

Exercise 1.16. Given a judgment t tree, we define two functions numLeaf (t) and numNode(t) for calcu-
lating the number of leaves and the number of nodes in t, respectively:

numLeaf (leaf) = 1
numLeaf (node (t1, n, t2)) = numLeaf (t1) + numLeaf (t2)

numNode(leaf) = 0
numNode(node (t1, n, t2)) = numNode(t1) + numNode(t2) + 1

Use rule induction to prove that if t tree, then numLeaf (t)− numNode(t) = 1.

May 15, 2007 13

Exercise 1.17. Prove a lemma: if ((· · · (︸ ︷︷ ︸
k

s lparen, then ((· · · (︸ ︷︷ ︸
k

()s lparen. Use this lemma to prove Lemma 1.12.

Your proof needs to exploit the equivalence between s mparen and s lparen as stated in Theorem 1.8 and
Exercise 1.15.

Exercise 1.18. Proof the converse of Theorem 1.10: if s mparen, then 0 � s.

Exercise 1.19. Consider an SML implementation of the factorial function:

fun fact’ 0 a = a
| fact’ n a = fact’ (n - 1) (n * a)

fun fact n = fact’ n 1

We wish to prove that fact n̂ evaluates to n̂! by mathematical induction on n ≥ 0, where n̂ stands for
an SML constant expression for a mathematical integer n. Since fact n̂ reduces to fact’ n̂ 1, we try
to prove a lemma that fact’ n̂ 1 evaluates to n̂!. Unfortunately it is impossible to prove the lemma
by mathematical induction on n. How would you generalize the lemma so that mathematical induction
works on n?

Exercise 1.20. The principle of mathematical induction states that for any natural number n, a judgment
P (n) holds if the following two conditions are met:

1. P (0) holds.

2. P (k) implies P (k + 1) where k ≥ 0.

There is another principle, called complete induction, which allows stronger assumptions in proving
P (k + 1):

1. P (0) holds.

2. P (0), P (1), · · · , P (k) imply P (k + 1) where k ≥ 0.

It turns out that complete induction is not a new principle; rather it is a derived principle which can
be justified by the principle of mathematical induction. Use mathematical induction to show that if the
two conditions for complete induction are met, P (n) holds for any natural number n.

Exercise 1.21. Consider the following inference rules for comparing two natural number for equality:

O
.= O

EqZero n
.= m

S n
.= S m

EqSucc

Show that the following inference rule is admissible:

n
.= m n double n′ m double m′

n′
.= m′ EqDouble

14 May 15, 2007

