Name: Hemos ID:

CSE-321 Programming Languages 2009 - Quiz 1 Sample Solution

	Problem 1	Problem 2	Total
Score			
Max	50	50	100

1 Structural induction [50 pts]

 $\mathsf{mparen} \qquad \qquad s \; ::= \; \epsilon \mid (s) \mid s \; s$

$$left[\epsilon] = 0$$

$$left[(s)] = 1 + left[s]$$

$$left[s_1 \ s_2] = left[s_1] + left[s_2]$$

$$right[\epsilon] = 0$$

$$right[(s)] = 1 + right[s]$$

$$right[s_1 \ s_2] = right[s_1] + right[s_2]$$

Fill in the blank to complete the proof.

Theorem 1.1. If $s \in \text{mparen}$, then left[s] = right[s].

Proof. By structural induction on s.

Case $s = \epsilon$:

 $left[\epsilon] = 0 = right[\epsilon]$

Case s = (s'):

 $\underline{left[s'] = right[s']}$

left[s] = 1 + left[s'] = 1 + right[s'] = right[s]

by induction hypothesis on s'

from left[s'] = right[s']

Case $s = s_1 \ s_2$:

$$\frac{left[s_1] = right[s_1]}{left[s_2] = right[s_2]}$$

by induction hypothesis on s_1

by induction hypothesis on s_2

$$left[s_1 \ s_2] = left[s_1] + left[s_2] = right[s_1] + right[s_2] = right[s_1 \ s_2]$$

from
$$\underline{left[s_1] = right[s_1]}$$
 and $\underline{left[s_2] = right[s_2]}$

2 Rule induction [50 pts]

$$\frac{s \text{ mparen}}{\epsilon \text{ mparen}} \ \frac{s \text{ mparen}}{(s) \text{ mparen}} \ \frac{s_1 \text{ mparen}}{s_1 \ s_2 \text{ mparen}} \ Mseq$$

$$\frac{\epsilon \text{ lparen}}{\epsilon \text{ lparen}} \ Leps \quad \frac{s_1 \text{ lparen}}{(s_1) \ s_2 \text{ lparen}} \ Lseq$$

Fill in the blank to complete the proof.

Theorem 2.1. If s lparen, then s mparen.

Proof. By rule induction on the judgment s lparen.

Case
$$\overline{\epsilon \text{ lparen}}$$
 $Leps$ where $s = \epsilon$:

 ϵ mparen

by the rule *Meps*

$${\rm Case} \quad \frac{s_1 \ {\rm lparen} \quad s_2 \ {\rm lparen}}{(s_1) \ s_2 \ {\rm lparen}} \ Lseq \quad {\rm where} \ s=(s_1) \ s_2 \ :$$

 $s_1 \; \mathsf{mparen}$

by induction hypothesis on s_1 lparen

 (s_1) mparen

by the rule *Mpar*

 s_2 mparen

by induction hypothesis on s_2 lparen

 (s_1) s_2 mparen

by the rule *Mseq*