1 Exceptions [60 pts]

Consider the abstract machine \(C \) for the simply typed \(\lambda \)-calculus:

\[
\begin{align*}
\text{type} & : A ::= P \mid A \to A \\
\text{base type} & : P \\
\text{expression} & : e ::= x \mid \lambda x : A. e \mid e \ e \\
\text{value} & : v ::= \lambda x : A. e \\
\text{frame} & : \phi ::= \square \ e \ \mid \ v \\
\text{stack} & : \sigma ::= \square \mid \sigma ; \phi \\
\text{state} & : s ::= \sigma \ \triangleright \ e \ \mid \sigma \ \triangleleft \ v
\end{align*}
\]

The goal of this problem is to extend the abstract machine \(C \) with exceptions.

To begin with, we introduce two new forms of expressions \(\text{try} \ e \) with \(e' \) and \(\text{exn} \):

\[
\begin{align*}
\text{expression} & : e ::= \cdots \mid \text{try} \ e \ \text{with} \ e' \mid \text{exn}
\end{align*}
\]

Informally \(\text{try} \ e \ \text{with} \ e' \) tries to evaluate \(e \). If \(e \) successfully evaluates to \(v \), then \(\text{try} \ e \ \text{with} \ e' \) also evaluates to the same value \(v \). In this case, \(e' \) is never visited and is thus ignored. If the evaluation of \(e \) raises an exception by attempting to reduce \(\text{exn} \), then the evaluation of \(e \) is canceled and \(e' \) is evaluated instead. In this way, \(\text{try} \ e \ \text{with} \ e' \) handles every exception raised within \(e \). Note that \(e' \) itself may also raise an exception, in which case the exception propagates to the next \(\text{try} \ e'_{\text{next}} \) with \(e'_{\text{next}} \) such that \(e'_{\text{next}} \) encloses \(\text{try} \ e \ \text{with} \ e' \).

Formally we extend the operational semantics with the following reduction rules.

\[
\begin{align*}
\text{exn} \ e \ \mapsto & \text{exn} \\
\text{exn} \ e \ e & \mapsto \text{exn}' \\
\text{try} \ e_1 \ \text{with} \ e_2 \ & \mapsto \text{try} \ e'_1 \ \text{with} \ e_2 \\
\text{try} \ v \ e_1 \ & \mapsto v \\
\text{try} \ e_1 \ \text{with} \ e_2 \ & \mapsto \text{try} \ e_1 \ \text{with} \ e_2
\end{align*}
\]

Give new rules for the reduction judgment \(s \ \mapsto_C \ s' \) corresponding to the above five reduction rules. You have to use an additional state \(\sigma \ \ll\ll \ \text{exn} \):

\[
\begin{align*}
\text{state} & : s ::= \cdots \mid \sigma \ \ll\ll \ \text{exn}
\end{align*}
\]

- A state \(\sigma \ \ll\ll \ \text{exn} \) means that the machine is currently propagating an exception \(\text{exn} \).

Instruction:

1. You will need exactly five rules.

2. Write only those rules related with \(\text{try} \ e \ \text{with} \ e' \) and \(\text{exn} \). For example, do not copy the rules from the course notes.

\[
\begin{align*}
\sigma \ \triangleright \ \text{try} \ e_1 \ \text{with} \ e_2 \ \mapsto_C \ \sigma ; \text{try} \ \square \ \text{with} \ e_2 \ \triangleright \ e_1 \\
\sigma ; \text{try} \ \square \ \text{with} \ e_2 \ \ll \ v \ \mapsto_C \ \sigma \ \ll \ v \\
\sigma \ \triangleright \ \text{exn} \ \mapsto_C \ \sigma \ \ll\ll \ \text{exn}
\end{align*}
\]
Consider the following simply typed λ-calculus extended with recursive types.

\[
\text{type } A ::= \text{unit} | A \to A | \alpha | \mu \alpha. A
\]

\[
\text{expression } e ::= x | \lambda x : A. e | e \ e | () | \text{fold}_C e | \text{unfold}_C e
\]

Question 1. [20 points] Define the call-by-value operational semantics of those constructs for recursive types. You have to write only those rules related with \(\text{fold}_C e\) and \(\text{unfold}_C e\). You will need exactly three rules.

\[
\begin{align*}
\text{Fold} & \quad e \mapsto e' \\
\text{fold}_C e & \mapsto \text{fold}_C e'
\end{align*}
\]

\[
\begin{align*}
\text{Unfold} & \quad e \mapsto e' \\
\text{unfold}_C e & \mapsto \text{unfold}_C e'
\end{align*}
\]

\[
\begin{align*}
\text{Unfold}^2 & \quad \text{unfold}_C \text{fold}_C v \mapsto v
\end{align*}
\]

Question 2. [20 points] State the reason why we do not need a reduction rule for \(\text{fold}_C \text{unfold}_C v\) (where \(v\) is a value):

If \(v = \text{fold}_C v'\) for a value \(v'\), then

\[\text{fold}_C \text{unfold}_C v = \text{fold}_C \text{unfold}_C \text{fold}_C v' \mapsto \text{fold}_C v'\]

Otherwise, \(\text{fold}_C \text{unfold}_C v\) get stuck. Therefore, we do not need any rule for \(\text{fold}_C \text{unfold}_C v\).