
CSE-321: Assignment 7

(100 points)

gla@postech

Due at 11:59pm, May 21 (Tuesday)

1 Introduction

In this assignment, you will be implementing Featherweight Java, or FJ, in SML. FJ is compact
yet retains all the core features of Java. First we will have an overview of FJ, and then present
a rigorous description of the syntax, typing rules, and reduction rules of FJ. Given a parser
for FJ, you will be writing a typechecker (from the typing rules) and an evaluator (from the
reduction rules). Although you are given a complete parser for FJ, you will begin only with
the signatures for the type checker and the evaluator. So you have to exploit your experience
gained in the previous assignments so that your code remains compact and well organized.

We suggest that you fully understand all the details of the typing and reduction rules,
design your code carefully by clearly stating the meaning of each function, and then begin to
write the code. Since the typing rules and reduction rules of FJ are not so simple, we encourage
you to spend enough time before actually writing code; both the amount of time it takes you to
finish this assignment and the conciseness of your code will be heavily affected by the clarity
of your overall design.

In the following section, we first introduce the main ideas of FJ informally, and then for-
mally presents its syntax, typing rules, and reduction rules.

2 Featherweight Java

In FJ, a program consists of a collection of class declarations plus an expression to be evaluated.
Here are some typical class declarations in FJ.

class A extends Object {
A() { super(); }

}

class B extends Object {
B() { super(); }

}

class Pair extends Object {
Object fst;
Object snd;
Pair(Object fst, Object snd) {
super(); this.fst = fst; this.snd = snd;

1



}
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd);

}
}

For the sake of syntactic regularity, we require that a class definition specify the supertype
(even when it is Object) and that a field access or a method invocation specify the receiver
(e.g., receiver this in a field access this.snd). Constructors always take the same stylized
form: there is one argument for each field which has the same name as the field itself; the
super constructor is invoked on the fields of the supertype; the remaining fields are initial-
ized to the corresponding arguments. In the example above, the supertype is always Object,
which has no fields, so the invocations of super have no arguments. Constructors are the only
place where super or = appears in a FJ program. Since FJ has no side effects, a method body
always consists of return followed by an expression, as in the body of setfst().

Under the above declaration of classes, the expression

new Pair(new A(), new B()).setfst(new B())

evaluates to the following expression:

new Pair(new B(), new B())

There are five forms of expression in FJ. Expressions such as new A(), new B(), and new
Pair(e1, e2) are object constructors, and e.setfst(e’) is an example of a method invoca-
tion. In the body of setfst, the expression this.snd is a field access, and the occurrences of
newfst and this are variables. The syntax of FJ differs from Java in that this is a variable
rather than a keyword.

The remaining form of expression is a cast. The expression

((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd

evaluates to the expression new B(). Here, ((Pair)e), where e is new Pair(...).fst,
is a cast. The cast is required because e is a field access to fst, which is declared to contain
an Object, whereas the next field access, to snd, is only valid on a Pair. At run time, it is
checked whether the Object stored in the fst field is a Pair (and the check succeeds in this
case).

Since FJ has no side effects, evaluation can be formalized entirely within the syntax of
FJ, with no additional mechanisms for modeling the heap. Moreover, in the absence of side
effects, the order in which expressions are evaluated does not affect the final outcome, so we can
define the operational semantics of FJ straightforwardly using a nondeterministic small-step
reduction relation.

There are three basic reduction rules: one for field access, one for method invocation, and
one for casts. The reduction rules assume that the object operated upon is first simplified to a
new expression, like the call-by-value reduction strategy for the λ-calculus.

Here is an example of the rule for field access in action:

new Pair(new A(), new B()).snd → new B()

Because of the stylized form for object constructors, we know that the constructor has one
argument for each field, in the same order that the fields are declared. Here the fields are fst
and snd, and an access to the snd field selects the second argument new B().

Here is an example of the rule for method invocation in action (/ denotes substitution):

2



new Pair(new A(), new B()).setfst(new B())

→ [
new B()/newfst,

new Pair(new A(), new B())/this
] new Pair(newfst, this.snd)

≡ new Pair(new B(), new Pair(new A(), new B()).snd)

The receiver of the invocation is the object new Pair(new A(), new B()), so we look up
the setfst method in the Pair class, where we find that it has formal argument newfst
and body new Pair(newfst, this.snd). The invocation reduces to the body with the
formal argument replaced by the actual argument (i.e., new B()/newfst), and the special
variable this replaced by the receiver object (i.e., new Pair(new A(), new B())/this).
Note that the class of the receiver determines where to look for the body (which means that FJ
supports method override), and the substitution of the receiver for this (which means that
FJ supports “recursion through self”). If a formal argument appears more than once in the
body, this may lead duplication of the actual argument, but fortunately this causes no problem
because there are no side effects in FJ.

Here is the rule for casts in action:

(Pair)new Pair(new A(), new B()) → new Pair(new A(), new B())

Once the subject of the cast is reduced to an object, it is easy to check if the class of the con-
structor is a subclass of the target of the cast. If so, as in the case here, the reduction removes
the cast. If not, as in the expression (A)new B(), no rule applies and the evaluation gets stuck,
denoting a run time error.

There are three ways in which an evaluation may get stuck: an attempt to access a field not
declared for the class, an attempt to invoke a method not declared for the class, or an attempt
to cast to something other than a superclass of the class. We can prove that the first two of these
never happen inwell typed programs and that the third never happens in well typed programs
that contain no downcasts and no stupid casts, both of which are explained in Section 3.2.

As usual, we allow reductions to apply to any subexpression of an expression. Here is an
example of an evaluation, where the next subexpression to be reduced at each step is under-
lined.

((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd
→ ((Pair)new Pair(new A(), new B())).snd
→ new Pair(new A(), new B()).snd
→ new B()

We can prove the type soundness of FJ: if an expression e reduces to expression e’, and if e
is well typed, e’ is also well typed and its type is a subtype of the type of e.

With this informal introduction, we now proceed to a formal definition of FJ.

3 Definition of FJ

3.1 Syntax

The syntax, typing rules, and computation rules for FJ are given in Figure 1, with a few auxil-
iary functions in Figure 2.

Metavariables A, B, C, D, and E range over class names; f and g range over field names; m
ranges over method names; x ranges over argument names; d and e range over expressions;
CL ranges over class declarations; K ranges over constructor declarations; and M ranges over
method declarations.

3



We write f as a shorthand for f1,...,fn (and similarly for C, x, e, etc.) and write M

as a shorthand for M1 ... Mn with no commas. We write the empty sequence as • and de-
note concatenation of sequences using a comma. The length of a sequence x is written #(x).
We abbreviate operations on pairs of sequences in the obvious way, writing “C f” as short-
hand for “C1 f1,...,Cn fn”, and similarly “C f;” as shorthand for “C1 f1;...;Cn fn;”, and
“this.f = f;” as shorthand for “this.f1= f1;...;this.fn= fn;”. Sequences of field dec-
larations, parameter names, and method declarations are assumed to contain no duplicate
names.

A class table CT is a mapping from class names C to class declarations CL. A program is a
pair (CT, e) of a class table CT and an expression e. To lighten the notation, we always assume
a fixed class table CT . That is, no new class declaration is generated when typechecking e.

The abstract syntax of FJ declarations, constructor declarations, method declarations, and
expressions is given at the top left of Figure 1. As in Java, we assume that casts bind less
tightly than other forms of expressions. We assume that the set of variables includes the special
variable this, but that this is never used as the name of an argument to a method.

Every class has a superclass, declared with extends. This raises a question: what is the
superclass of the Object class ? We take Object as a distinguished class name whose definition
does not appear in the class table. The auxiliary functions that look up fields and method
declarations in the class table are equipped with special cases for Object that return an empty
sequence of fields and an empty set of methods.

By looking at the class table, we can read off the subtype relation between classes. We write
C <: D when C is a subtype of D, that is, subtyping is the reflexive and transitive closure of
the immediate subclass relation given by the extends clauses in CT . It is defined formally in
the middle of the left column of Figure 1.

The given class table is assumed to satisfy some sanity conditions (dom(?) returns the do-
main of ?): (1) CT (C) = class C ... for every C ∈ dom(CT ); (2) Object /∈ dom(CT ); (3)
for every class name C except Object appearing somewhere in CT , we have C ∈ dom(CT );
and (4) there are no cycles in the subtype relation induced by CT , that is, the <: relation is
antisymmetric.

For the typing and reduction rules, we need a few auxiliary definitions, given in Figure 2.
The fields of a class C, written fields(C), is a sequence C f pairing the class of a field with its
name, for all the fields declared in class C and all of its superclasses. The type of the method
m in class C, written mtype(m, C), is a pair, written B → B, of a sequence of argument types
B and a result type B. Similarly, the body of the method m in class C, written mbody(m, C),
is a pair, written (x,e), of a sequence of parameters x and an expression e. The predicate
override(m, D, C → C0) judges if a method mwith argument types C and a result type C0 may be
defined in a subclass of D. In case of overriding, if a method with the same name is declared in
the superclass, it must have the same type.

3.2 Typing

The typing rules for expressions, method declarations, and class declarations are in the right
column of Figure 1. An environment Γ is a finite mapping from variables to types, written
x : C.

The typing judgment for expressions has the form Γ ⊢ e ∈ C, read “in the environment Γ,
expression e has type C.” The typing rules are syntax directed, with one rule for each form
of expression, save that there are three rules for casts. The typing rules for constructors and
method invocations check that each actual argument has a type that is a subtype of the cor-
responding formal argument. We abbreviate typing judgments on sequences in the obvious

4



way, writing Γ ⊢e ∈ C as a shorthand for Γ ⊢e1 ∈ C1, · · · , Γ ⊢en ∈ Cn and writing C <: D as a
shorthand for C1 <: D1, · · · , Cn <: Dn.

There are three rules for type casts: in an upcast (C)e, the subject e is a subclass of the target
C; in a downcast (C)e, the target C is a subclass of the subject e; in a stupid cast, the target is
unrelated to the subject. Although the Java compiler rejects an expression containing a stupid
cast as ill-typed, we allow stupid casts in FJ. This is because a sensible expression may be
reduced to one containing a stupid cast. For example, consider the following expressionwhich
uses classes A and B as defined as in the previous section:

(A)(Object)new B() → (A)new B()

We indicate the special nature of stupid casts by including the hypothesis stupid warning in the
typing rule for stupid casts (T-SCAST); an FJ typing corresponds to a legal Java typing only if
it does not contain this rule.1

The typing judgment for method declarations has the form M OK IN C, read “method
declaration M is okay if it occurs in class C.” It uses the expression typing judgment on the
body of a method, where the free variables are the augments of the methodwith their declared
types, plus the special variable thiswith type C.

The typing judgment for class declarations has the form CL OK, read “class declaration
CL is okay.” It checks that the constructor applies super to the fields of the superclass and
initializes the fields declared in this class, and that each method declaration in the class is
okay.

The type of an expression may depend on the types of methods that it invokes, and the
type of a method depends on the type of an expression, namely its body. So it is necessary to
check that there is no ill-defined circularity here. It turns out that there is no such ill-defined
circularity: the circularity is broken because the type of each method is explicitly declared. It
is possible to load and use the class table before all the classes are checked as long as each class
is eventually typechecked.

3.3 Evaluation

The reduction judgment is of the form e → e′, read “expression e reduces to expression e′ in
one step.” We write→∗ for the reflexive and transitive closure of →.

The reduction rules are given in the bottom left column of Figure 1. There are three re-
duction rules, (R-FIELD) for field access, (R-INVK) for method invocation, and (R-CAST) for
casting. These rules were already explained in Section 1. We write [d/x, e/y]e0 for the result of
replacing x1 by d1, x2 by d2, · · · , xn by dn, and y by e in expression e0.

The remaining reduction rules in Figure 1 specify a nondeterministic reduction strategy for
FJ under which the reduction rules may be applied at any subexpression. For example, the
rule (RC-INVK-ARG) does not specify whether e0 is reducible or not, or whether ej with j < i
is reducible or not. To be strict, therefore, an expression can be reduced to a unique expression
in several different ways and there is no single correct order of reduction in FJ.

For this assignment, we will choose a specific deterministic reduction strategy that can
be thought of as an analogue of the call-by-value reduction strategy for the λ-calculus. This
assumption will simplify the overall implementation of the evaluator and save you a lot of
time!

• In the rules (R-FIELD), (R-INVK), and (R-CAST), new C(e) should not be reducible.

• In the rule (RC-INVK-ARG), e0 should not be reducible.

1Stupid casts were omitted from Java, causing its published proof of type soundness to be incorrect.

5



• In the rule (RC-INVK-ARG), ej with j < i should not be reducible.

• In the rule (RC-NEW-ARG), ej with j < i should not be reducible.

Then a value (which is not further reducible) must always be of the form new C(v) where each
v is also a value. (Why?)

4 What to hand in

Download hw7.zip from the course webpage and unzip it on your working directory. You
will implement two functions typeOf and step in typingEval.sml:

(* computes the type of a program, or raises TypeError if no type exists *)
val typeOf : FJava.program -> FJava.typ

(* one-step evaluation, raises Stuck if impossible *)
val step : FJava.program -> FJava.program

Given a program of type FJava.programwhich consists of class declarations and an expres-
sion, your implementation needs to first verify that each class declaration is okay (according to
the rule T-CLASS) and then compute the type of the expression. If some class declaration is not
okay or the expression has no type, TypeError should be raised. When a stupid cast warning
is issued by the rule (T-SCAST), your implementation should print Stupid Warning. Just
use an expression print "Stupid Warning\n" of type unit.

To test your implementation, first open the structure Loop and then use the function loopFile
as follows:

- loopFile "turing.fj" (step (wait showType));
...

The stub file includes five FJ files: bool.fj, test downcast.fj, test override.fj,
test stupidcast.fj, and turing.fj. (Use the included Java program src.java to see
how turing.fjworks.)

Strive to make your code as concise as possible. In the sample solution, typingEval.sml
is about 250 lines long, including comments.

Submission instruction

When you have the file typingEval.sml ready for submission, rename the TypingEval
structure in it to your Hemos ID. Then copy it to your hand-in directory. For example, if your
Hemos ID is foo, rename TypingEval to foo and copy TypingEval.sml to:

/afs/postech.ac.kr/class/cse/cs321/handin/hw7/foo/

Good luck !

6






