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Chapter 1

Introduction to Functional
Programming

This chapter presents basic ideas underlying functional programming, or programming in functional
languages. All examples are written in Standard ML (abbreviated as SML henceforth), but it should
be straightforward to translate them in any other functional language because all functional languages
share the same design principle at their core. The results of running example programs are all produced
in the interactive mode of SML of New Jersey.

Since this chapter is devoted to the discussion of important concepts in functional programming,
the reader is referred to other sources for a thorough introduction to SML.

1.1 Functional programming paradigm
In the history of programming languages, there have emerged a few different programming paradigms.
Each programming paradigm focuses on different aspects of programming, showing strength in some
application areas but weakness in others. Object-oriented programming, for example, exploits the
mechanism of extending object classes to express the relationship between different objects. Func-
tional programming, as its name suggests, is unique in its emphasis on the role of functions as the
basic component of programs. Combined with proper support for modular development, functional
programming proves to be an excellent choice for developing large-scale software.

Functional programming is often compared with imperative programming to highlight its charac-
teristic features. In imperative programming, the basic component is commands. Typically a program
consists of a sequence of commands which yield the desired result when executed. Thus a program
written in the imperative style is usually a description of “how to compute” — how to sort an array,
how to add an element to a linked list, how to traverse a tree, and so on. In contrast, functional program-
ming naturally encourages programmers to concentrate on “what to compute” because every program
fragment must have a value associated with it.

To clarify the difference, let us consider an if-then-else conditional construct. In an imperative
language (e.g., C, Java, Pascal), the following code looks innocent with nothing suspicious; in fact, such
code is often inevitable in imperative programming:

if (x == 1) then
x = x + 1;

The above code executes the command to increment variable x when it is equal to 1; if it is not equal
to 1, no command is executed — nothing wrong here. Now consider the following code written in a
hypothetical functional language:

if (x = 1) then x + 1

With the else branch missing, the above code does not make sense: every program fragment must
have a value associated with it, but the above code does not have a value when x is different from 1.
For this reason, it is mandatory to provide the else branch in every functional language.
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As with other programming paradigms, the power of functional programming can be truly ap-
preciated only with substantial experience with it. Unlike other programming paradigms, however,
functional programming is built on a lot of fascinating theoretical ideas, independently of the issue of
its advantages and disadvantages in software development. Thus functional programming should be
the first step in your study of programming language theory!

1.2 Expressions and values
In SML, programs consists of expressions which range from simple constants to complex functions. Each
expression can have a value associated with it, and the process of reducing an expression to a value is
called evaluation. We say that an expression evaluates to a value when such a process terminates. Note
that a value is a special kind of expression.

Example: integers

An integer constant 1 is an expression which is already a value. An integer expression 1 + 1 is not
a value in itself, but evaluates to an integer value 2. We can try to find the value associated with an
expression by typing it and appending a semicolon at the SML prompt:

- 1 + 1;
val it = 2 : int

The second line above says that the result of evaluating the given expression is a value 2. (We ignore
the type annotation : int until Section 1.5.)

All arithmetic operators in SML have names familiar from other programming languages (e.g., +, -,
*, div, mod). The only notable exception is the unary operator for negation, which is not - but ˜. For
example, ˜1 is a negative integer, but -1 does not evaluate to an integer.

Example: boolean values

Boolean constants in SML are true and false, and a conditional construct has the form if e then e1 else e2
where e, e1, and e2 are all expressions and e must evaluate to a boolean value. For example:

- if 1 = ˜1 then 10 else ˜10;
val it = ˜10 : int

Here 1 = ˜1 is an expression which compares two subexpressions 1 and ˜1 for equality. (In fact, = is
also an expression — a binary function taking two arguments.) Since the two subexpressions are not
equal, 1 = ˜1 evaluates to false, which in turn causes the whole expression to evaluate to ˜10.

Logical operators available in SML include andalso, orelse, and not. The two binary opera-
tors implement short-circuiting internally, but short-circuiting makes no difference in pure functional
programming because the evaluation of an expression never produces side effects.

Exercise 1.1. Can you simplify if e then true else false?

1.3 Variables
A variable is a container for a value. As an expression, it evaluates to the very value it stores. We use the
keyword val to initialize a variable. For example, a variable x is initialized with an integer expression
1 + 1 as follows:

- val x = 1 + 1;
val x = 2 : int

Note that we must provide an expression to be used in computing the initial value for x because there
is no default value for any variable in SML. (In fact, the use of default values for variables does not
even conform to the philosophy of functional programming for the reason explained below.) After
initializing x, we may use it in other expressions:
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- val y = x + x;
val y = 4 : int

We say that a variable is bound to a given value when it is initialized.
Unlike variables in imperative languages, a variable in SML is immutable in that its contents never

change. In other words, a variable is bound to a single value for life. (This is the reason why it makes
no sense to declare a variable without initializing it or by initializing it with a default value.) In this
sense, “variable” is a misnomer because the contents of a variable is not really “variable.” Despite their
immutability, however, variables are useful in functional programming. Consider an example of a local
declaration of SML in which zero or more local variables are declared before evaluating a final expression:

let
val x = 1
val y = x + x

in
y + y

end

Here we declare two local variables x and y before evaluating y + y. Since y is added twice in the
final expression, it saves computation time to declare y as a local variable instead of expanding both
instances of y into x + x. The use of the local variable y also improves code readability.

While it may come as a surprise to you (especially if you still believe that executing a sequence of
commands is the only way to complete a computation, as is typical in imperative programming), im-
mutability of variables is in fact a feature that differentiates functional programming from imperative
programming — without such a restriction on variables, there would be little difference between func-
tional programming and imperative programming because commands (e.g., for updating the contents
of a variable) become available in both programming paradigms.

1.4 Functions

In the context of functional programming, a function can be thought of as equivalent to a mathematical
function, i.e., a black box mapping a given input to a unique output. Thus declaring a function in SML
is indeed tantamount to defining a mathematical function, which in turn implies that the definition of
a mathematical function is easily transcribed into an SML function. Interesting examples are given in
Section 1.6 when we discuss recursion, and the present section focuses on the concept of function and
its syntax in SML.

We use the keyword fun to declare a function. For example, we declare a function incr that returns
a given integer incremented by one as follows:

- fun incr x = x + 1;
val incr = fn : int -> int

Here x is called a formal argument/parameter because it serves only as a placeholder for an actual argu-
ment/parameter. x + 1 is called a function body. We can also create a nameless function with the keyword
fn. The following code creates the same function as incr and stores it in a variable incr:

- val incr = fn x => x + 1;
val incr = fn : int -> int

The two declarations above are equivalent to each other.
A function application proceeds by substituting an actual argument for a formal argument in a func-

tion body and then evaluating the resultant expression. For example, a function application incr 0
(applying function incr to 0) evaluates to integer 1 via the following steps:

incr 0
7→ (fn x => x + 1) 0
7→ 0 + 1
7→ 1

September 30, 2011 3



As an expression, a function is already a value. Intuitively a function is a black box whose internal
working is hidden from the outside, and thus cannot be further reduced. As a result, a function body
is evaluated only when a function application occurs. For example, a nameless function fn x => 0 +
1 does not evaluate to fn x => 1; only when applied to an actual argument (which is ignored in this
case) does it evaluate its body.

An important feature of functional programming is that functions are treated no differently from
primitive values such as boolean values and integers. For example, a function can be stored in a variable
(as shown above), passed as an actual argument to another function, and even returned as a return value
of another function. Such values are often called first-class objects in programming language jargon
because they are the most basic element comprising a program. Hence functions are first-class objects
in functional languages. In fact, it turns out that a program in a functional language can be thought of
as consisting entirely of functions and nothing else, since primitive values can also be encoded in terms
of functions (which will be discussed in Chapter 3).

Interesting examples exploiting functions as first-class objects are found in Section 1.10. For now,
we will content ourselves with an example illustrating that a function can be a return value of another
function. Consider the following code which declares a function add taking two integers to calculate
their sum:

- fun add x y = x + y;
val add = fn : int -> int -> int

Then what is a nameless function corresponding to add? A naive attempt does not even satisfy the
syntax rules:

- val add = fn x y => x + y;
<some syntax error message>

The reason why the above attempt fails is that every function in SML can have only a single argument!
The function add above (declared with the keyword fun) appears to have two arguments, but it is just
a disguised form of a function that take an integer and returns another function:

- val add = fn x => (fn y => x + y);
val add = fn : int -> int -> int

That is, when applied to an argument x, it returns a new function fn y => x + y which returns x +
y when applied to an argument y. Thus it is legitimate to apply add to a single integer to instantiate a
new function as demonstrated below:

- val incr = add 1;
val incr = fn : int -> int
- incr 0;
val it = 1 : int
- incr 1;
val it = 2 : int

Now it should be clear how the evaluation of add 1 1 proceeds:
add 1 1

7→ (fn x => (fn y => x + y)) 1 1
7→ (fn y => 1 + y) 1
7→ 1 + 1
7→ 2

1.5 Types
Documentation is an integral part of good programming — without proper documentation, no code
is easy to read unless it is self-explanatory. The importance of documentation (which is sometimes
overemphasized in an introductory programming language course), however, often misleads students
into thinking that long documentations are always better than concise ones. This is certainly untrue!
For example, an overly long documentation on the function add can be more distracting than helpful
to the reader:
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(* Takes two arguments and returns their sum.
* Both arguments must be integers.
* If not, the result is unpredictable.
* If their sum is too large, an overflow may occur.
* ...
*)

The problem here is that what is stated in the documentation cannot be formally verified by the compiler
and we have to trust whoever wrote it. As an unintended consequence, any mistake in the documenta-
tion can leave the reader puzzled about the meaning of the code rather than helping her understand it.
(For the simple case of add, it is not impossible to formally prove that the result is the sum of the two
arguments, but then how can you express this property of add as part of the documentation?)

On the other hand, short documentations that can be formally verified by the compiler are often
useless. For example, we could extend the syntax of SML so as to annotate each function with the
number of its arguments:

argnum add 2 (* NOT valid SML syntax! *)
fun add x y = x + y;

Here argnum add 2, as part of the code, states that the function add has two arguments. The compiler
can certainly verify that add has two arguments, but this property of add does not seem to be useful.

Types are a good compromise between expressiveness and simplicity: they convey useful informa-
tion on the code (expressiveness) and can be formally verified by the compiler (simplicity). Informally
a type is a collection of values of the same kind. For example, an expression that evaluates to an in-
teger or a boolean constant has type int or bool, respectively. The function add has a function type
int -> (int -> int) because given an integer of type int, it returns another function of type
int -> int which takes an integer and returns another integer.1 To exploit types as a means of docu-
mentation, we can explicitly annotate any formal argument with its type; the return type of a function
and the type of any subexpression in its body can also be explicitly specified:

- fun add (x:int) (y:int) : int = (x + y) : int;
val add = fn : int -> int -> int

The SML compiler checks if types provided by programmers are valid; if not, it spits out an error
message:

- fun add (x:int) (y:bool) = x + y;
stdIn:2.23-2.28 Error: <some error message>

Perhaps add is too simple an example to exemplify the power of types, but there are countless examples
in which the type of a function explains what it does.

Another important use of types is as a debugging aid. In imperative programming, successful com-
pilation seldom guarantees absence of errors. Usually we compile a program, run the executable code,
and then start debugging by examining the result of the execution (be it a segmentation fault or a num-
ber different than expected). In functional programming with a rich type system, the story is different:
we start debugging a program before running the executable code by examining the result of the com-
pilation which is usually a bunch of type errors. Of course, neither in functional programming does
successful compilation guarantee absence of errors, but programs that successfully compile run cor-
rectly in most cases! (You will encounter numerous such examples in doing assignments.) Types are
such a powerful tool in software engineering.

1.6 Recursion
Many problems in computer science require iterative procedures to reach a solution – adding integers
from 1 to 100, sorting an array, searching for an entry in a B-tree, and so on. Because of its prominent
role in programming, iterative computation is supported by built-in constructs in all programming
languages. The C language, for example, provides constructs for directly implementing iterative com-
putation such as the for loop construct:

1 -> is right associative and thus int -> int -> int is equal to int -> (int -> int).
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for (i = 1; i <= 10; i++)
sum += i;

The example above uses an index variable i which changes its value from 1 to 10. Surprisingly we
cannot translate the above code in the pure fragment of SML (i.e., without mutable references) because
no variable in SML is allowed to change its value! Does this mean that SML is inherently inferior to
C in its expressive power? The answer is “no:” SML supports recursive computations which are equally
expressive to iterative computations.

Typically a recursive computation proceeds by decomposing a given problem into smaller problems,
solving these smaller problems separately, and then combining their individual answers to produce a
solution to the original problem. (Thus it is reminiscent of the divide-and-conquer algorithm which is
in fact a particular instance of recursion.) It is important that these smaller problems are also solved
recursively using the same method, perhaps by spawning another group of smaller problems to be
solved recursively using the same method, and so on. Since such a sequence of decomposition cannot
continue indefinitely (causing nontermination), a recursive computation starts to backtrack when it
encounters a situation in which no such decomposition is necessary (e.g., when the problem at hand is
immediately solvable). Hence a typical form of recursion consists of base cases to specify the termination
condition and inductive cases to specify how to decompose a problem into smaller ones.

As an example, here is a recursive function sum adding integers from 1 to a given argument n; note
that we cannot use the keyword fn because we need to call the same function in its function body:

- fun sum n =
if n = 1 then 1 (* base case *)
else n + sum (n - 1); (* inductive case *)

val sum = fn : int -> int

The evaluation of sum 10 proceeds as follows:

sum 10
7→ if 10 = 1 then 1 else 10 + sum (10 - 1)
7→ if false then 1 else 10 + sum (10 - 1)
7→ 10 + sum (10 - 1)
7→ 10 + sum 9
7→∗ 10 + 9 + · · · 2 + sum 1
7→ 10 + · · · 2 + (if 1 = 1 then 1 else 1 + sum (1 - 1))
7→ 10 + · · · 2 + (if true then 1 else 1 + sum (1 - 1))
7→ 10 + · · · 2 + 1

As with iterative computations, recursive computations may fall into infinite loops (i.e., non-terminating
computations), which occur if the base condition is never reached. For example, if the function sum is
invoked with a negative integer as its argument, it goes into an infinite loop (usually ending up with a
stack overflow). In most cases, however, an infinite loop is due to a design flaw in the function body
rather than an invocation with an inappropriate argument. Therefore it is a good practice to design
a recursive function before writing code. A good way to design a recursive function is to formulate a
mathematical equation. For example, a mathematical equation for sum would be given as follows:

sum(1) = 1
sum(n) = 1 + sum(n− 1) if n > 1

Once such a mathematical equation is formulated, it should take little time to transcribe it into an SML
function. (So think a lot before you write code!)

SML also supports mutually recursive functions. The keyword and is used to declare two or more
mutually recursive functions. The following code declares two mutually recursive functions even and
odd which determine whether a given natural number is even or odd:

fun even n =
if n = 0 then true
else odd (n - 1)

and odd n =
if n = 0 then false
else even (n - 1)
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Recursion may appear at first to be an awkward device not suited to iterative computations. This
may be because iterative approaches, which are in fact intuitively easier to comprehend than recursive
approaches, come first to mind (after being indoctrinated with mindless imperative programming!).
Once you get used to functional programming, however, you will find that recursion is not an awkward
device at all, but the most elegant device you can use in programming. (Note that elegant is synonymous
with easy-to-use in the context of programming.) So the bottom line is: always think recursively!

1.7 Polymorphic types
In a software development process, we often write the same pattern of code repeatedly only with minor
differences. As such, it is desirable to write a single common piece of code and then instantiate it with
a different parameter whenever a copy of it is needed, thereby achieving a certain degree of code reuse.
The utility of such a scheme is obvious. For example, if a bug is discovered in the program, we do not
have to visit all the different places only to make the same change.

The question of how to realize code reuse in a safe way is quite subtle, however. For example, the
C language provides macros to facilitate code reuse, but macros are notoriously prone to unexpected
errors. Templates in the C++ language are safer because their parameters are types, but they are still
nothing more than complex macros. In contrast, SML provides a code reuse mechanism, which not only
is safe but also has a solid theoretical foundation, called parametric polymorphism.2

As a simple example, consider an identity function id:

val id = fn x = x;

Since we do not specify the type of x, it may accept an argument of any type. Semantically such an
invocation of id poses no problem because its body does not need to know what type of value x is
bound to. This observation suggests that a single declaration of id is conceptually equivalent to an
infinite number of declarations all of which share the same function body:

val idint = fn (x:int) = x;
val idbool = fn (x:bool) = x;
val idint→int = fn (x:int -> int) = x;
· · ·

When id is applied to an argument of type A, the SML compiler automatically chooses the right decla-
ration of id for type A.

The type system of SML compactly represents all these declarations of the same structure with a
single declaration by exploiting a type variable:

- val id = fn (x:’a) => x;
val id = fn : ’a -> ’a

Here type variable ’a may read “any type α”.3 Then the type of id means that given an argument of
any type α, it returns a value of type α. We may also explicitly specify type variables that may appear
in a variable declaration by listing them before the variable:

- val ’a id = fn (x:’a) => x;
val id = fn : ’a -> ’a

We refer to types with no type variables as monotypes (or monomorphic types), and types with some
type variables as polytypes (or polymorphic types). The type system of SML allows a type variable to be
replaced by any monotype (but not a polytype).

1.8 Datatypes
We have briefly discussed a few primitive types in SML. Here we give a comprehensive summary of
basic types available in SML for future reference:

2A bit similar to, but not to be confused with the polymorph spell in the Warcraft series!
3Conventionally type variables are read as Greek letters (e.g., ’a as alpha, ’b as beta, and so on).
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• bool: boolean values true and false.

• int: integers.
E.g., 0, 1, ˜1, · · · .

• real: floating pointer numbers.
E.g., 0.0, 1.0, ˜1.0.

• char: characters.
E.g., #"a", #"b", #" ".

• string: character strings.
E.g., "hello", "newline\n", "quote\"", "backslash\\".

• A -> B: functions from type A to type B.

• A * B: pairs of types A and B.
If e1 has type A and e2 has type B, then (e1, e2) has type A * B.
E.g., (0, true) : int * bool.
A * B is called a product type.

• A1 * A2 * · · · * An: tuples of types A1 through An.
E.g., (0, true, 1.0) : int * bool * real.
Tuple types are a generalized form of product types.

• unit: unit value ().
The only value belonging to type unit is (). It is useful when declaring a function taking no
interesting argument (e.g., of type unit -> int).

These types suffice for most problems in which only numerical computations are involved. There are,
however, a variety of problems for which symbolic computations are more suitable than numerical com-
putations. As an example, consider the problem of classifying images into three categories: circles,
squares, and triangles. We can assign integers 1, 2, 3 to these three shapes and use a function of type
image -> int to classify images (where image is the type for images). A drawback of this approach
is that it severely reduces the maintainability of the code: there is no direct connection between shapes
and type int, and programmers should keep track of which variable of type int denotes shapes and
which denotes integers.

A better approach is to represent each shape with a symbolic constant. In SML, we can use a datatype
declaration to define a new type shape for three symbolic constants:

datatype shape = Circle | Square | Triangle

Each symbolic constant here has type shape. For example:

- Circle;
val it = Circle : shape

Note that datatypes are a special way of defining new types; hence they form only a subset of types. For
example, int -> int is a (function) type but not a datatype whereas every datatype is also a type.

A datatype declaration is similar to an enumeration type in the C language, but with an important
difference: symbolic constants are not compatible with integers and cannot be substituted for integers.
Hence the new approach based on datatypes does not suffer from the same disadvantage of the previous
approach. We refer to such symbolic constants as data constructors, or simply constructors in SML.

There is another feature of SML datatypes that sets themselves apart from C enumeration types:
constructors may have arguments. For example, we can augment the above datatype declaration with
arguments for constructors:

datatype shape =
Circle of real

| Square of real
| Triangle of real * real * real
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To create values of type shape, then, we have to provide appropriate arguments for constructors:

- Circle 1.0;
val it = Circle 1.0 : shape
- Square 1.0;
val it = Square 1.0 : shape
- Triangle (1.0, 1.0, 1.0);
val it = Triangle (1.0,1.0,1.0) : shape

Note that each constructor may be seen as a function from its argument type to type shape. For exam-
ple, Circle is a function of type real -> shape:

- Circle;
val it = fn : real -> shape

Now we will discuss two important extensions of the datatype declaration mechanism. To motivate
the first extension, consider a datatype pair bool for pairing boolean values and another datatype
pair int for pairing integers:

datatype pair bool = Pair of bool * bool
datatype pair int = Pair of int * int

The two declarations are identical in structure except their argument types. We have previously seen
how declarations of functions with the same structure but with different argument types can be coa-
lesced into a single declaration by exploiting type variables. The situation here is no different: for any
type A, a new datatype pair A can be declared exactly in the same way:

datatype pair A = Pair of A * A

The SML syntax for parameterizing a datatype declaration with type variables is to place type variables
before the datatype name to indicate which type variables are local to the datatype declaration. Here
are a couple of examples:

datatype ’a pair = Pair of ’a * ’a
datatype (’a, ’b) hetero = Hetero of ’a * ’b

- Pair (0, 1);
val it = Pair (0,1) : int pair
- Pair (0, true);
stdIn:5.1-5.15 Error: <some error message>
- Hetero (0, true);
val it = Hetero (0,true) : (int,bool) hetero

The second extension of the datatype declaration mechanism allows a datatype to be used as the
type of arguments for its own constructors. As with recursive functions, there must be at least one
constructor (corresponding to base cases for recursive functions) that does not use the same datatype
for its arguments — without such a constructor, it would be impossible to build values belonging to the
datatype. Such datatypes are commonly referred to as recursive datatypes, which enable us to implement
recursive data structures. As an example, consider a datatype itree for binary trees whose nodes store
integers:

datatype itree =
Leaf of int

| Node of itree * int * itree

The constructor Leaf represents a leaf node storing an integer of type int; the constructor Node rep-
resents an internal node which contains two subtrees as well as an integer. For example,

Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)
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represents the following binary tree:
7

3

1 2

4

Note that without using Leaf, it is impossible to build a value of type itree.
The two extensions of the datatype declaration mechanism may coexist to define recursive datatypes

with type variables. For example, the datatype itree above can be generalized to a datatype tree for
binary trees of values of any type:

datatype ’a tree =
Leaf of ’a

| Node of ’a tree * ’a * ’a tree

Now arguments to constructors Leaf and Node automatically determine the actual type to be substi-
tuted for type variable ’a:

- Node (Leaf ˜1, 0, Leaf 1);
val it = Node (Leaf ˜1,0,Leaf 1) : int tree
- Node (Leaf "L", "C", Leaf "R");
val it = Node (Leaf "L","C",Leaf "R") : string tree

Note that once type variable ’a is instantiated to a specific type (say int), values of different types (say
string) cannot be used. In other words, tree can be used only for homogeneous binary trees. The
following expression does not compile because it does not determine a unique type for ’a:

- Node (Leaf ˜1, "C", Leaf 1);
stdIn:35.1-35.28 Error: <some error message>

Recursive data structures are common in both functional and imperative programming. In con-
junction with type parameters, recursive datatypes in SML (and any other functional language) enable
programmers to implement most of the common recursive data structures in a concise and elegant way.
More importantly, a recursive data structure implemented in SML can have the compiler recognize
some of its invariants, i.e., certain conditions that must hold for all instances of the data structure. For
example, given the definition of the datatype tree above, the SML compiler is aware of the invariant
that every internal node must have two child nodes. This invariant would not be trivial to enforce in
imperative programming. (Can you implement in the C or C++ language a datatype for binary trees in
which every internal node has exactly two child nodes?)

We close this section with a brief introduction to the most frequently used datatype in functional
programming: lists. They are provided as a built-in datatype list with two constructors: a unary
constructor nil and a binary constructor :::

datatype ’a list = nil | :: of ’a * ’a list

nil denotes an empty list of any type (because it has no argument). ::, called cons, is a right-associative
infix operator and builds a list of type ’a list by concatenating its head of type ’a and tail of type ’a
list. For example, the following expression denotes a list consisting of 1, 2, and 3 in that order:

1 :: 2 :: 3 :: nil

Another way to create a list in SML is to enumerate its elements separated by commas ,within brackets
([ and ]). For example, [1, 2, 3] is an abbreviation of the list given above. The two notations may
also appear simultaneously within any list expression. For example, the following expressions are all
equivalent:

[1, 2, 3]
1 :: [2, 3]
1 :: 2 :: [3]
1 :: 2 :: 3 :: []
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1.9 Pattern matching
So far we have investigated how to create expressions of various types in SML. Equally important is
the question of how to inspect those values that such expressions evaluate to. For simple types such as
integers and tuples, the question is easy to answer: we only need to invoke operators already available
in SML. For example, we use arithmetic and comparison operators on integers to test if a given integer
belongs to a certain interval; for tuple types (including product types), we use the projection operator
#n to retrieve the n-th element of a given tuple (e.g, #2(1, 2, 3) evaluates to 2). In order to answer
the question for datatypes, however, we need a means of testing which constructor has been applied in
creating values of a given datatype. What makes this possible in SML is pattern matching.

As an example, let us write a function length that calculates the length of a given list. The way that
length works is by simple recursion:

• If the argument is nil, return 0.

• If the argument has the form <head> :: <tail>, then invoke length on <tail> and return
the result incremented by 1 (to account for <head>).

Thus length tries to match a given list with nil and :: in either order. Moreover, when the list is
matched with ::, it also needs to retrieve arguments to :: so as to invoke itself once more. The above
definition of length is translated into the following code using pattern matching (which remotely
resembles the switch construct in the C language):

fun length l =
case l of

nil => 0
| head :: tail => 1 + length tail

Note that nil here is not a value; rather it is a pattern to be compared with l (or whatever follows the
keyword case). Likewise head :: tail is a pattern which, when matched, binds head to the head
of l and tail to the tail of l. If a pattern match occurs, the whole case expression reduces to the
expression to the right of the corresponding =>. We call nil and head :: tail constructor patterns
because of their use of datatype constructors.

Exercise 1.2. What is the type of length?

In the case of length, we do not need head in the second pattern. A wildcard pattern may be used
if no binding is necessary:

fun length l =
case l of

nil => 0
| :: tail => 1 + length tail

alone is also a valid pattern, which comes in handy when not every constructor needs to be considered.
For example, a function testing if a given list is nil can be implemented as follows:

fun testNil l =
case l of

nil => true (* if l is nil *)
| => false (* for ALL other cases *)

Regardless of constructors associated with the datatype list, the case analysis above is exhaustive
because matches with any value.

Pattern matching in SML can be thought of as a generalized version of the if-then-else condi-
tional construct. In fact, pattern matching is applicable to any type (not just datatypes with construc-
tors). For example, if e then e1 else e2 may be expanded into:

case e of case e of
true => e1 or true => e1

| false => e2 | => e2
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It turns out that all variables in SML are also a special form of patterns, which in turn implies that any
variable may be replaced by another pattern. We have seen two ways of introducing variables in SML:
using the keyword val and in function declarations. Thus what immediately follows val can be not
just a single variable but also any form of pattern; similarly formal arguments in a function declaration
can be any form of pattern. As a first example, an easy way to retrieve all individual elements of a tuple
is to exploit a tuple pattern (instead of repeatedly using the projection operator #n):

val (x, y, z) = <some tuple expression>

You can even use a constructor pattern head :: tail to match with a list:

val (head :: tail) = [1, 2, 3];

Here head becomes bound to 1 and tail to [2, 3]. Note, however, that the pattern is not exhaustive.
For example, if nil is given as the right hand side, there is no way to match head :: tail with nil.
(We will see in Section 1.11 how to handle such abnormal cases.) As a second example, we can rewrite
the mutually recursive functions even and odd using pattern matching:

fun even 0 = true
| even n = odd (n - 1)

and odd 0 = false
| odd n = even (n - 1)

1.10 Higher-order functions

We have seen in Section 1.4 that every function in SML is a first-class object — it can be passed as an
argument to another function and also returned as the result of a function application. Then a func-
tion that takes another function as an argument or returns another function as the result has a function
typeA -> B in whichA andB themselves may contain function types. We refer to such a function as a
higher-order function. For example, functions of type (int -> int) -> int or int -> (int -> int)
are all higher-order functions. We may also use type variables in higher-order function types. For ex-
ample, (’a -> ’b) -> (’b -> ’c) -> (’a -> ’c) is a higher-order function type. (Can you
guess what a function of this type is supposed to do?)

Higher-order functions can significantly simplify many programming tasks when properly used. As
an example, consider a higher-order function map of type (’a -> ’b) -> ’a list -> ’b list.

Exercise 1.3. Make an educated guess of what a function of the above type is supposed to do. If you
make a correct guess, it typifies the use of types as a means of documentation!

As you might have guessed, map takes a function f of type ’a -> ’b and a list l of type ’a list, and
applies f to each element of l to create another list of type ’b list. Here is an example of using map
with the two functions even and odd defined above:

- map even [1, 2, 3, 4];
val it = [false,true,false,true] : bool list
- map odd [1, 2, 3, 4];
val it = [true,false,true,false] : bool list

The behavior of map is formally written as follows:

map f [l1,l2, · · ·,ln] = [f l1,f l2, · · ·,f ln] (n ≥ 0) (1.1)

In order to implement map, we rewrite the equation (1.1) inductively by splitting it into two cases:
a base case n = 0 and an inductive case n > 0. The base case is easy because the right side is an empty
list:

map f [] = [] (1.2)
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The inductive case exploits the observation that [f l2, · · ·,f ln] results from another application of
map:4

map f [l1,l2, · · ·,ln] = f l1 :: map f [l2, · · ·,ln] (n > 0) (1.3)

The two equations (1.2) and (1.3) derive the following definition of map:

fun map f [] = []
| map f (head :: tail) = f head :: map f tail

map processes elements of a given list independently. Another higher-order function foldl (mean-
ing “fold left”) processes elements of a given list sequentially by using the result of processing an ele-
ment when processing the next element. It has type (’a * ’b -> ’b) -> ’b -> ’a list -> ’b
where ’b denotes the type of the result of processing an element. Its behavior is formally written as
follows:

foldl f a0 [l1,l2, · · ·,ln] = f (ln, · · · f (l2, f (l1, a0)) · · · ) (n ≥ 0) (1.4)

a0 can be thought of as an initial value of an accumulator whose value changes as elements in the list
are sequentially processed. Thus the equation (1.4) can be expanded to a series of equations as follows:

a1 = f (l1, a0)
a2 = f (l2, a1)

...
an = f (ln, an−1) = foldl f a0 [l1,l2, · · ·,ln]

As with map, we implement foldl by rewriting the equation (1.4) inductively. The base case returns
the initial value a0 of the accumulator:

foldl f a0 [] = a0 (1.5)

The inductive case makes a recursive call with a new value of the accumulator:

foldl f a0 [l1,l2, · · ·,ln] = foldl f (f (l1,a0))[l2, · · ·,ln] (n > 0) (1.6)

The two equations (1.5) and (1.6) derive the following definition of foldl:

fun foldl f a [] = a
| foldl f a (head :: tail) = foldl f (f (head, a)) tail

As an example, we can obtain the sum of integers in a list with a call to foldl:

- foldl (fn (x, y) => x + y) 0 [1, 2, 3, 4];
val it = 10 : int

Exercise 1.4. A similar higher-order function is foldr (meaning “fold right”) which has the same type
as foldl, but processes a given list from its last element to its first element:

foldr f a0 [l1,l2, · · ·,ln] = f (l1, · · · f (ln−1, f (ln, a0)) · · · ) (n ≥ 0)

Give an implementation of foldr.

1.11 Exceptions
Exceptions in SML provide a convenient mechanism for handling erroneous conditions that may arise
during a computation. An exception is generated, or raised, either by the runtime system when an
erroneous condition is encountered, or explicitly by programmers to transfer control to a different part
of the program. For example, the runtime system raises an exception when a division by zero occurs, or

4:: has a lower operator precedence than function applications, so we do not need parentheses.
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when no pattern in a case expression matches with a given value; programmers may choose to raise an
exception when an argument to a function does not satisfy the invariant of the function. An exception
can be caught by an exception handler, which analyzes the exception to decide whether to raise another
exception or to resume the computation. Thus not every exception results in aborting the computation.

An exception is a data constructor belonging to a special built-in datatype exnwhose set of construc-
tors can be freely extended by programmers. An exception declaration consists of a data constructor
declaration preceded by the keyword exception. For example, we declare an exception Error with
a string argument as follows:

exception Error of string

To raise Error, we use the keyword raise:

raise Error "Message for Error"

As exceptions are constructors for a special datatype exn, the syntax for exception handlers also
uses pattern matching:

e handle
<pattern1> => e1

| · · ·
| <patternn> => en

If an exception is raised during the evaluation of expression e, <pattern1> through <patternn> are
tested in that order for a pattern match. If <patterni> matches with the exception, ei becomes a new
expression to be evaluated; if no pattern matches, the exception is propagated to the next exception
handler, if any.

As a contrived example, consider the following code:

exception BadBoy of int;
exception BadGirl of int;
1 + (raise BadGirl ˜1) handle

BadBoy s => (s * s)
| BadGirl s => (s + s)

Upon attempting to evaluate the second operand of +, an exception BadGirl with argument ˜1 is
raised. Then the whole evaluation is aborted and the exception is propagated to the enclosing exception
handler. As the second pattern matches with the exception being propagated, the expression s + s to
the right of => becomes a new expression to be evaluated. With s replaced by the argument ˜1 to
BadGirl, the whole expression evaluates to ˜2.

Exceptions are useful in a variety of situations. Even fully developed programs often exploit the
exception mechanism to deal with exceptional cases. For example, when a time consuming computation
is interrupted with a division by zero, the exception mechanism comes to rescue to save the partial result
accumulated by the time of interruption. Here are a couple of other examples of exploiting exceptions
in functional programming:

• You are designing a program in which a function f must never be called with a negative integer
(which is an invariant of f). You raise an exception at the entry point of f if its argument is found
to be a negative integer.

• All SML programs that you hand in for programming assignments should compile; otherwise
you will receive no credit for your hard work. Now you have finished implementing a function
funEasy but not another function funHard, both of which are part of the assignment. Instead
of forfeiting points for funEasy, you submit the following code for funHard, which instantly
makes the whole program compile:

exception NotImplemented
fun funHard = raise NotImplemented

This trick works because raise NotImplemented has type ’a.
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1.12 Modules

Modular programming is a methodology for software development in which a large program is par-
titioned into independent smaller units. Each unit contains a set of related functions, types, etc. that
can be readily reused in different programming tasks. SML provides a strong support for modular pro-
gramming with structures and signatures. A structure, the unit of modular programming in SML, is a
collection of declarations satisfying the specification given in a signature.

A structure is a collection of functions, types, exceptions, and other elements enclosed within a
struct — end construct; a signature is a collection of specifications on these declarations enclosed
within a sig — end construct. For example, the structure in the left conforms to the signature in the
right:

struct sig
type ’a set = ’a list type ’a set
val emptySet : ’a set = nil val emptySet : ’a set
fun singleton x = [x] val singleton : ’a -> ’a set
fun union s1 s2 = s1 @ s2 val union : ’a set -> ’a set -> ’a set

end end

The first line in the signature states that a type declaration of ’a set must be given in a structure
matching it; any type declaration resulting in a new type ’a set is acceptable. In the example above,
we use a type declaration using the keyword type, but a datatype declaration like

datatype ’a set = Empty | Singleton of ’a | Union of ’a set * ’a set

is also fine, if other elements in the same structure are redefined accordingly. The second line in the
signature states that a variable emptySet of type ’a set must be defined in a structure matching
it. The structure defines a variable emptySet of type ’a list, which coincides with ’a set under
the definition of ’a set. The third line in the signature states that a variable singleton of type
’a -> ’a set, or equivalently a function singleton of type ’a -> ’a set, must be defined in a
structure matching it. Again singleton in the structure has type ’a -> ’a list which is equal to
’a -> ’a set under the definition of ’a set. The case for union is similar.5

Like ordinary values, structures and signatures can be given names. We use the keywords structure
and signature as illustrated below:

structure Set = signature SET =
struct sig
... ...

end end

Elements of the structure Set can then be accessed using the . notation familiar from the C language
(e.g., Set.set, Set.emptySet, · · · ).

Now how can we specify that the structure Set conforms to the signature SET? One way to do this
is to impose a transparent constraint between Set and SET using a colon (:):

structure Set : SET = ...

The constraint by : says that Set conforms to SET; the program does not compile if Set fails to imple-
ment some specification in SET. Another way is to impose an opaque constraint between Set and SET
using the symbol :>:

structure Set :> SET = ...

The constraint by :> says not only that Set conforms to SET but also that only those type declarations
explicitly mentioned in SET are visible to the outside. To clarify their difference, consider the following
code:

5@ is an infix operator concatenating two lists.
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signature S = sig structure Transparent : S =
type t struct

end type t = int
val x = 1

end

structure Opaque :> S =
struct

type t = int
val x = 1

end

First note that both structures Transparent and Opaque conform to signature S. Since S does not
declare variable x, there is no way to access Transparent.x and Opaque.x. The difference between
Transparent and Opaque lies in the visibility of the definition of type t. In the case of Transparent,
the definition of t as int is exported to the outside. Thus the following declaration is accepted because
it is known that Transparent.t is indeed int:

- val y : Transparent.t = 1;
val y = 1 : Transparent.t

In the case of Opaque, however, the definition of t remains unknown to the outside, which causes the
following declaration to be rejected:

- val z : Opaque.t = 1;
stdIn:3.5-3.21 Error: <some error message>

An opaque constraint in SML allows programmers to achieve data abstraction by hiding details
of the implementation of a structure. In order to use structures given opaque constraints (e.g., those
included in the SML basis library or written by other programmers), therefore, you only need to read
their signatures to see what values are exported. Often times you will see detailed documentation in
signatures but no documentation in structures, for which there is a good reason.

SML also provides an innovative feature called functors which can be thought of as functions on
structures. A functor takes as input a structure of a certain signature and generates as output a fresh
structure specialized for the input structure. Since all structures generated by a functor share the same
piece of code found in its definition, it enhances code reuse for modular programming.

To illustrate the use of functors, consider a signature for sets of values with an order relation:

datatype order = LESS | EQUAL | GREATER

signature ORD_SET =
sig

type item (* type of elements *)
type set (* type of sets *)
val compare : item * item -> order (* order relation *)
val empty : set (* empty set *)
val add : set -> item -> set (* add an element *)
val remove : set -> item -> set (* remove an element *)

end

Function compare compares two values of type item to determine their relative size (less-than, equal,
greater-than), and thus specifies an order relation on type item. A structure implementing the signature
ORD_SET may take advantage of such an order relation on type item. For example, it may define set
as item list with an invariant that values in every set are stored in ascending order with respect to
compare, and exploit the invariant in implementing operations on set.

Now let us consider two structures of signature ORD_SET:

structure IntSet : ORD_SET = structure StringSet : ORD_SET =
struct struct
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type item = int type item = string
type set = item list type set = item list
fun compare (x, y) = fun compare (x, y) =
if x < y then LESS if String.< (x, y) then LESS
else if x > y then GREATER else if String.> (x, y) then GREATER
else EQUAL else EQUAL

val empty = [] val empty = []
fun add s x = ... fun add s x = ...
fun remove s x = ... fun remove s x = ...

end end

If the two structures assume the same invariant on type set (e.g., values are stored in ascending order),
code for functions add and remove can be identical in both structures. Then the two structures may
share the same piece of code except for the definition of type item and function compare. Functors
enhance code reuse in such a case by enabling programmers to write a common piece of code for both
structures just once.

Here is a functor that generates IntSet and StringSet when given appropriate structures as
input. First we define a signature ORD_KEY for input structures in order to provide types or values
specific to IntSet and StringSet:

signature ORD_KEY =
sig

type ord_key
val compare : ord_key * ord_key -> order

end

A functor OrdSet takes a structure OrdKey of signature ORD_KEY and generates a structure of signa-
ture ORD_SET:

functor OrdSet (OrdKey : ORD_KEY) : ORD_SET =
struct

type item = OrdKey.ord_key
type set = item list
val compare = OrdKey.compare
val empty = []
fun add _ _ = ...
fun remove _ _ = ...

end

In order to generate IntSet and StringSet, we need corresponding structures of signature ORD_KEY:

structure IntKey : ORD_KEY = structure StringKey : ORD_KEY =
struct struct

type ord_key = int type ord_key = string
fun compare (x, y) = fun compare (x, y) =
if x < y then LESS if String.< (x, y) then LESS
else if x > y then GREATER else if String.> (x, y) then GREATER
else EQUAL else EQUAL

end end

When given IntKey and StringKey as input, OrdSet generates corresponding structures of signa-
ture ORD_SET:

structure IntSet = OrdSet (IntKey)
structure StringSet = OrdSet (StringKey)
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Chapter 2

Inductive Definitions

This chapter discusses inductive definitions which are an indispensable tool in the study of programming
languages. The reason why we need inductive definitions is not difficult to guess: a programming
language may be thought of a system that is inhabited by infinitely many elements (or programs), and
we wish to give a complete specification of it with a finite description; hence we need a mechanism of
inductive definition by which a finite description is capable of yielding an infinite number of elements
in the system. Those techniques related to inductive definitions also play a key role in investigating
properties of programming languages. We will study these concepts with a few simple languages.

2.1 Inductive definitions of syntactic categories

An integral part of the definition of a programming language is its syntax which answers the question
of which program (i.e., a sequence of characters) is recognizable by the parser and which program is
not. Typically the syntax is specified by a number of syntactic categories such as expressions, types, and
patterns. Below we discuss how to define syntactic categories inductively in a few simple languages.

Our first example defines a syntactic category nat of natural numbers:

nat n ::= O | S n

Here nat is the name of the syntactic category being defined, and n is called a non-terminal. We read
::= as “is defined as” and | as “or.” O stands for “zero” and S “successor.” Thus the above definition is
interpreted as:

A natural number n is either O or S n′ where n′ is another natural number.

Note that nat is defined inductively: a natural number S n′ uses another natural number n′, and thus
nat uses the same syntactic category in its definition. Now the definition of nat produces an infinite
collection of natural numbers such as

O, S O, S S O, S S S O, S S S O, · · · .

Thus nat specifies a language of natural numbers.
A syntactic category may refer to another syntactic category in its definition. For example, given the

above definition of nat, the syntactic category tree below uses nat in its inductive definition:

tree t ::= leaf n | node (t, n, t)

leaf n represents a leaf node with a natural number n; node (t1, n, t2) represents an internal node with
a natural number n, a left child t1, and a right child t2. Then tree specifies a language of regular binary
trees of natural numbers such as

leaf n, node (leaf n1, n, leaf n2), node (node (leaf n1, n, leaf n2), n
′, leaf n′′), · · · .
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A similar but intrinsically different example is two syntactic categories that are mutually inductively
defined. For example, we simultaneously define two syntactic categories even and odd of even and odd
numbers as follows:

even e ::= O | S o
odd o ::= S e

According to the definition above, even consists of even numbers such as

O, S S O, S S S S O, · · ·

whereas odd consists of odd numbers such as

S O, S S S O, S S S S S O, · · · .

Note that even and odd are subcategories of nat because every even number e or odd number o is also a
natural number. Thus we may think of even and odd as nat satisfying certain properties.

Exercise 2.1. Define even and odd independently of each other.

Let us consider another example of defining a syntactic subcategory. First we define a syntactic
category paren of strings of parentheses:

paren s ::= ε | (s | )s

ε stands for the empty string (i.e., εs = s = sε). paren specifies a language of strings of parentheses with
no constraint on the use of parentheses. Now we define a subcategory mparen of paren for those strings
of matched parentheses:

mparen s ::= ε | (s) | s s

mparen generates such strings as

ε , () , ()() , (()) , (())() , ()()() , · · · .

mparen is ambiguous in the sense that a string belonging to mparen may not be decomposed in a
unique way (according to the definition of mparen). For example, ()()() may be thought of as either ()()
concatenated with () or () concatenated with ()(). The culprit is the third case s s in the definition: for
a sequence of substrings of matched parentheses, there can be more than one way to split it into two
substrings of matched parentheses. An alternative definition of lparen below eliminates ambiguity in
mparen:

lparen s ::= ε | (s) s

The idea behind lparen is that the first parenthesis in a non-empty string s is a left parenthesis “(” which
is paired with a unique occurrence of a right parenthesis “ )”. For example, s = (())() can be written
as (s1)s2 where s1 = () and s2 = (), both strings of matched parentheses, are uniquely determined by
s. ()) and (()(), however, are not strings of matched parentheses and cannot be written as (s1)s2 where
both s1 and s2 are strings of matched parentheses.

An inductive definition of a syntactic category is a convenient way to specify a language. Even the
syntax of a full-scale programming language (such as SML) uses essentially the same machinery. It is,
however, not the best choice for investigating properties of languages. For example, how can we formally
express that n belongs to nat if S n belongs to nat, let alone prove it? Or how can we show that a string
belonging to mparen indeed consists of matched parentheses? The notion of judgment comes into play
to address such issues arising in inductive definitions.

2.2 Inductive definitions of judgments
A judgment is an object of knowledge, or simply a statement, that may or may not be provable. Here
are a few examples:

• “1− 1 is equal to 0” is a judgment which is always provable.
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• “1 + 1 is equal to 0” is also a judgment which is never provable.

• “It is raining” is a judgment which is sometimes provable and sometimes not.

• “S S O belongs to the syntactic category nat” is a judgment which is provable if nat is defined as
shown in the previous section.

Then how do we prove a judgment? For example, on what basis do we assert that “1 − 1 is equal to
0” is always provable? We implicitly use arithmetic to prove “1 − 1 is equal to 0”, but strictly speaking,
arithmetic rules are not given for free — we first have to reformulate them as inference rules.

An inference rule consists of premises and a conclusion, and is written in the following form (where
J stands for a judgment):

J1 J2 · · · Jn

J
R

The inference rule, whose name is R, states that if J1 through Jn (premises) hold, then J (conclusion)
also holds. As a special case, an inference rule with no premise (i.e., n = 0) is called an axiom. Here are
a few examples of inference rules and axioms where we omit their names:

m is equal to l l is equal to n
m is equal to n

m is equal to n
m+ 1 is equal to n+ 1

n is equal to n 0 is a natural number
My coat is wet

It is raining
Judgments are a general concept that covers any form of knowledge: knowledge about weather,

knowledge about numbers, knowledge about programming languages, and so on. Note that judg-
ments alone are inadequate to justify the knowledge being conveyed — we also need inference rules
for proving or refuting judgments. In other words, the definition of a judgment is complete only when
there are inference rules for proving or refuting it. Without inference rules, there can be no meaning in the
judgment. For example, without arithmetic rules, the statement “1−1 is equal to 0” is nothing more than
nonsense and thus cannot be called a judgment.

Needless to say, judgments are a concept strong enough to express membership in a syntactic cate-
gory. As an example, let us recast the inductive definition of nat as a system of judgments and inference
rules. We first introduce a judgment n nat:

n nat ⇔ n is a natural number

We use the following two inference rules to prove the judgment n nat where their names, Zero and Succ,
are displayed:

O nat
Zero

n nat
S n nat

Succ

n in the rule Succ is called a metavariable which is just a placeholder for another sequence of O and
S and is thus not part of the language consisting of O and S . That is, n is just a (meta)variable which
ranges over the set of sequences of O and S ; n itself (before being replaced by S O, for example) is not
tested for membership in nat.

The notion of metavariable is similar to the notion of variable in SML. Consider an SML expression
x = 1 where x is a variable of type int. The expression makes sense only because we read x as a
variable that ranges over integer values and is later to be replaced by an actual integer constant. If
we literally read x as an (ill-formed) integer, x = 1 would always evaluate to false because x, as an
integer constant, is by no means equal to another integer constant 1.

The judgment n nat is now defined inductively by the two inference rules. The rule Zero is a base
case because it is an axiom, and the rule Succ is an inductive case because the premise contains a judg-
ment smaller in size than the one (of the same kind) in the conclusion. Now we can prove, for example,
that S S O nat holds with the following derivation tree, in which S S O nat is the root and O nat is the only
leaf (i.e., it is an inverted tree):

O nat
Zero

S O nat
Succ

S S O nat
Succ

Similarly we can rewrite the definition of the syntactic category tree in terms of judgments and inference
rules:
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t tree ⇔ t is a regular binary tree of natural numbers

n nat
leaf n tree

Leaf
t1 tree n nat t2 tree

node (t1, n, t2) tree
Node

A slightly more complicated example is a judgment that isolates full regular binary trees of natural
numbers, as shown below. Note that there is no restriction on the form of judgment as long as its
meaning is clarified by inference rules. We may even use English sentences as a valid form of judgment!

t ctree〈d〉 ⇔ t is a full regular binary tree of natural numbers of depth d

n nat

leaf n ctree〈O〉
Cleaf

t1 ctree〈d〉 n nat t2 ctree〈d〉

node (t1, n, t2) ctree〈S d〉
Cnode

The following derivation tree proves that

O

O

O O

O

O O

is a full regular binary tree of depth S S O:

O nat
Zero

leaf O ctree〈O〉
Cleaf

O nat
Zero

O nat
Zero

leaf O ctree〈O〉
Cleaf

node (leaf O, O, leaf O) ctree〈S O〉
Cnode

O nat (omitted)
node (node (leaf O, O, leaf O), O, node (leaf O, O, leaf O)) ctree〈S S O〉

Cnode

We can also show that t = node (leaf O, O, node (leaf O, O, leaf O)) is not a full regular binary tree as
we cannot prove t ctree〈d〉 for any natural number d:

O nat d′ = O

leaf O ctree〈d′〉
Cleaf

O nat
Zero

· · · d′ = S d′′

node (leaf O, O, leaf O) ctree〈d′〉
Cnode

node (leaf O, O, node (leaf O, O, leaf O)) ctree〈S d′〉
Cnode

It is easy to see why the proof fails: the left subtree of t requires d′ = O while the right subtree of t
requires d′ = S d′′, and there is no way to solve two conflicting equations on d′.

As with the syntactic categories even and odd, multiple judgments can be defined simultaneously.
For example, here is the translation of the definition of even and odd into judgments and inference rules:

n even ⇔ n is an even number
n odd ⇔ n is an odd number

O even
ZeroE

n odd
S n even

SuccE
n even
S n odd

SuccO

The following derivation tree proves that S S O is an even number:

O even
ZeroE

S O odd
SuccO

S S O even
SuccE

Exercise 2.2. Translate the definition of paren, mparen, and lparen into judgments and inference rules.
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2.3 Derivable rules and admissible rules
As shown in the previous section, judgments are defined with a certain (fixed) number of inference
rules. When put together, these inference rules justify new inference rules which may in turn be added
to the system. The new inference rules do not change the characteristics of the system because they can
all be justified by the original inference rules, but may considerably facilitate the study of the system.
For example, when multiplying two integers, we seldom employ the basic arithmetic rules, which can
be thought of as original inference rules; instead we mostly use the rules of the multiplication table,
which can be thought of as new inference rules.

There are two ways to introduce new inference rules: as derivable rules and as admissible rules. A
derivable rule is one in which the gap between the premise and the conclusion can be bridged by a
derivation tree. In other words, there always exists a sequence of inference rules that use the premise
to prove the conclusion. As an example, consider the following inference rule which states that if n is a
natural number, so is S S n:

n nat
S S n nat

Succ2

The rule Succ2 is derivable because we can justify it with the following derivation tree:

n nat
S n nat

Succ

S S n nat
Succ

Now we may use the rule Succ2 as if it was an original inference rule; when asked to justify its use, we
can just present the above derivation tree.

An admissible rule is one in which the premise implies the conclusion. That is, whenever the
premise holds, so does the conclusion. A derivable rule is certainly an admissible rule because of the
derivability of the conclusion from the premise. There are, however, admissible rules that are not deriv-
able rules. (Otherwise why would we distinguish between derivable and admissible rules?) Consider
the following inference rule which states that if S n is a natural number, so is n:

S n nat
n nat Succ−1

First observe that the rule Succ−1 is not derivable: the only way to derive n nat from S n nat is by the
rule Succ, but the premise of the rule Succ is smaller than its conclusion whereas S n nat is larger than
n nat. That is, there is no derivation tree like

S n nat

...
Succ−1

n nat Succ−1

.

Now suppose that the premise S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat as follows:

...
n nat
S n nat

Succ

Then we can extract a smaller derivation tree
...

n nat
which proves n nat. Hence the rule Succ−1 is

justified as an admissible rule.
An important property of derivable rules is that they remain valid even when the system is aug-

mented with new inference rules. For example, the rule Succ2 remains valid no matter how many
new inference rules are added to the system because the derivation of S S n nat from n nat is always
possible thanks to the rule Succ (which is not removed from the system). In contrast, admissible rules
may become invalid when new inference rules are introduced. For example, suppose that the system
introduces a new (bizarre) inference rule:

n tree
S n nat

Bizarre
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The rule Bizarre invalidates the previously admissible rule Succ−1 because the rule Succ is no longer
the only way to prove S n nat and thus S n nat fails to guarantees n nat. Therefore the validity of an
admissible rule must be checked each time a new inference rule is introduced.

Exercise 2.3. Is the rule
n even

S S n even SuccE 2 derivable or admissible? What about the rule S S n even
n even SuccE−2 ?

2.4 Inductive proofs

We have learned how to specify systems using inductive definitions of syntactic categories or judg-
ments, or inductive systems of syntactic categories or judgments. While it is powerful enough to specify
even full-scale programming languages (i.e., their syntax and semantics), the mechanism of inductive
definition alone is hardly useful unless the resultant system is shown to exhibit desired properties. That
is, we cannot just specify a system using an inductive definition and then immediately use it without
proving any interesting properties. For example, our intuition says that every string in the syntactic
category mparen has the same number of left and right parentheses, but the definition of mparen itself
does not automatically prove this property; hence we need to formally prove this property ourselves in
order to use mparen as a language of strings of matched parentheses. As another example, consider the
inductive definition of the judgments n even and n odd. The definition seems to make sense, but it still
remains to formally prove that n in n even indeed represents an even number and n in n odd an odd
number.

There is another important reason why we need to be able to prove properties of inductive systems.
An inductive system is often so complex that its soundness, i.e., its definition being devoid of any
inconsistencies, may not be obvious at all. In such a case, we usually set out to prove a property that
is supposed to hold in the system. Then each flaw in the definition that destroys the property, if any,
manifests itself at some point in the proof (because it is impossible to complete the proof). For example,
an expression in a functional language is supposed to evaluate to a value of the same type, but this
property (called type preservation) is usually not obvious at all. By attempting to prove type preservation,
we can either locate flaws in the definition or partially ensure that the system is sound. Thus proving
properties of an inductive system is the most effective aid in fixing errors in the definition.

First we will study a principle called structural induction for proving properties of inductive systems
of syntactic categories. Next we will study another principle called rule induction for proving properties
of inductive systems of judgments. Since an inductive system of syntactic category is a simplified
presentation of a corresponding inductive system of judgments, structural induction is in fact a special
case of rule induction. Nevertheless structural induction deserves separate treatment because of the
role of syntactic categories in the study of programming languages.

2.4.1 Structural induction

The principle of structural induction states that a property of a syntactic category may be proven induc-
tively by analyzing the structure of its definition: for each base case, we show that the property holds
without making any assumption; for each inductive case, we first assume that the property holds for
each smaller element in it and then prove the property holds for the entire case.

A couple of examples will clarify the concept. Consider the syntactic category nat of natural num-
bers. We wish to prove that P (n) holds for every natural number n. Examples of P (n) are:

• n has a successor.

• n is O or has a predecessor n′ (i.e., S n′ = n).

• n is a product of prime numbers (where definitions of products and prime numbers are assumed
to be given).

By structural induction, we prove the following two statements:

• P (O) holds.

• If P (n) holds, then P (S n) also holds.
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The first statement is concerned with the base case in which O has no smaller element in it; hence we
prove P (O) without any assumption. The second statement is concerned with the inductive case in
which S n has a smaller element n in it; hence we first assume, as an induction hypothesis, that P (n)
holds and then prove that P (S n) holds. The above instance of structural induction is essentially the
same as the principle of mathematical induction.

As another example, consider the syntactic category tree of regular binary trees. In order to prove
that P (t) holds for every regular binary tree t, we need to prove the following two statements:

• P (leaf n) holds.

• If P (t1) and P (t2) hold as induction hypotheses, then P (node (t1, n, t2)) also holds.

The above instance of structural induction is usually called tree induction.
As a concrete example of an inductive proof by structural induction, let us prove that every string

belonging to the syntactic category mparen has the same number of left and right parentheses. (Note
that we are not proving that mparen specifies a language of strings of matched parentheses.) We first
define two auxiliary functions left and right to count the number of left and right parentheses. For
visual clarity, we write left [s] and right [s] instead of left(s) and right(s). (We do not define left and right

on the syntactic category paren because the purpose of this example is to illustrate structural induction
rather than to prove an interesting property of mparen.)

left [ε] = 0
left [(s)] = 1 + left [s]

left [s1 s2] = left [s1] + left [s2]
right [ε] = 0

right [(s)] = 1 + right [s]
right [s1 s2] = right [s1] + right [s2]

Now let us interpret P (s) as “left [s] = right [s].” Then we want to prove that if s belongs to mparen,
written as s ∈ mparen, then P (s) holds.

Theorem 2.4. If s ∈ mparen, then left [s] = right [s].

Proof. By structural induction on s.
Each line below corresponds to a single step in the proof. It is written in the following format:

conclusion justification

This format makes it easy to read the proof because in most cases, we want to see the conclusion first
rather than its justification.

Case s = ε:
left [ε] = 0 = right [ε]

Case s = (s′):
left [s′] = right [s′] by induction hypothesis on s′
left [s] = 1 + left [s′] = 1 + right [s′] = right [s] from left [s′] = right [s′]

Case s = s1 s2:
left [s1] = right [s1] by induction hypothesis on s1
left [s2] = right [s2] by induction hypothesis on s2
left [s1 s2] = left [s1] + left [s2] = right [s1] + right [s2] = right [s1 s2]

from left [s1] = right [s1] and left [s2] = right [s2]

In the proof above, we may also say “by induction on the structure of s” instead of “by structural
induction on s.”
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2.4.2 Rule induction

The principle of rule induction is similar to the principle of structural induction except that it is applied
to derivation trees rather than definitions of syntactic categories. Consider an inductive definition of a
judgment J with two inference rules:

Jb
Rbase

J1 J2 · · · Jn

Ji
Rind

We want to show that whenever J holds, another judgment P (J) holds where P (J) is a new form of
judgment parameterized over J . For example, when J is “n nat”, P (J) may be “either n even or n odd.”
To this end, we prove the following two statements:

• P (Jb) holds.

• If P (J1), P (J2), · · · , and P (Jn) hold as induction hypotheses, then P (Ji) holds.

By virtue of the first statement, the following inference rule makes sense because we can always prove
P (Jb):

P (Jb)
R′

base

The following inference rule also makes sense because of the second statement: it states that if P (J1)
through P (Jn) hold, then P (Ji) also holds, which is precisely what the second statement proves:

P (J1) P (J2) · · · P (Jn)

P (Ji)
R′

ind

Now, for any derivation tree for J using the rules Rbase and Rind, we can prove P (J) using the rules
R′

base and R′
ind:

Jb
Rbase =⇒ P (Jb)

R′
base

...
J1

...
J2

· · ·
...
Jn

Ji
Rind

=⇒

...
P (J1)

...
P (J2)

· · ·
...

P (Jn)

P (Ji)
R′

ind

In other words, J always implies P (J). A generalization of the above strategy is the principle of rule
induction.

As a trivial example, let us prove that n nat implies either n even or n odd. We let P (n nat) be “either
n even or n odd” and apply the principle of rule induction. The two rules Zero and Succ require us to
prove the following two statements:

• P (O nat) holds. That is, for the case where the rule Zero is used to prove n nat, we have n = O and
thus prove P (O nat).

• If P (n′ nat) holds, P (S n′ nat) holds. That is, for the case where the rule Succ is used to prove
n nat, we have n = S n′ and thus prove P (S n′ nat) using the induction hypothesis P (n′ nat).

According to the definition of P (J), the two statements are equivalent to:

• Either O even or O odd holds.

• If either n′ even or n′ odd holds, then either S n′ even or S n′ odd holds.

A formal inductive proof proceeds as follows:

Theorem 2.5. If n nat, then either n even or n odd.
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Proof. By rule induction on the judgment n nat.
It is of utmost importance that we apply the principle of rule induction to the judgment n nat rather

than the natural number n. In other words, we analyze the structure of the proof of n nat, not the struc-
ture of n. If we analyze the structure of n, the proof degenerates to an example of structural induction!
Hence we may also say “by induction on the structure of the proof of n nat” instead of “by rule induc-
tion on the judgment n nat.”

Case O nat
Zero (where n happens to be equal to O):

(This is the case where n nat is proven by applying the rule Zero. It is not obtained as a case where n is
equal to O, since we are not analyzing the structure of n. Note also that we do not apply the induction
hypothesis because the premise has no judgment.)
O even by the rule ZeroE

Case
n′ nat

S n′ nat
Succ (where n happens to be equal to S n′):

(This is the case where n nat is proven by applying the rule Succ.)
n′ even or n′ odd by induction hypothesis
S n′ odd or S n′ even by the rule SuccO or SuccE

Rule induction can also be applied simultaneously to two or more judgments. As an example, let us
prove that n in n even represents an even number and n in n odd an odd number. We use the rules ZeroE ,
SuccE , and SuccO in Section 2.2 along with the following inference rules using a judgment n double n′:

O double O
Dzero

n double n′

S n double S S n′ Dsucc

Intuitively n double n′ means that n′ is a double of n (i.e., n′ = 2 × n). The properties of even and odd
numbers are stated in the following theorem:

Theorem 2.6.
If n even, then there exists n′ such that n′ double n.
If n odd, then there exist n′ and n′′ such that n′ double n′′ and S n′′ = n.

The proof of the theorem follows the same pattern of rule induction as in previous examples except
that P (J) distinguishes between the two cases J = n even and J = n odd:

• P (n even) is “there exists n′ such that n′ double n.”

• P (n odd) is “there exist n′ and n′′ such that n′ double n′′ and S n′′ = n.”

An inductive proof of the theorem proceeds as follows:

Proof of Theorem 2.6. By simultaneous rule induction on the judgments n even and n odd.

Case O even
ZeroE where n = O:

O double O by the rule Dzero

We let n′ = O.

Case
np odd

S np even
SuccE where n = S np:

n′
p double n′′

p and S n′′
p = np by induction hypothesis

S n′
p double S S n′′

p by the rule Dsucc with n′
p double n′′

p

S n′
p double n from S S n′′

p = S np = n
We let n′ = S n′

p.

Case
np even

S np odd
SuccO where n = S np:

n′
p double np by induction hypothesis

We let n′ = n′
p and n′′ = np from n = S np
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2.5 Techniques for inductive proofs
An inductive proof is not always as straightforward as the proof of Theorem 2.5. For example, the
theorem being proven may be simply false! In such a case, the proof attempt (which will eventually
fail) may help us to extract a counterexample of the theorem. If the theorem is indeed provable (or is
believed to be provable) but a direct proof attempt fails, we can try a common technique for inductive
proofs. Below we illustrate three such techniques: introducing a lemma, generalizing the theorem, and
proving by the principle of inversion.

2.5.1 Using a lemma
We recast the definition of the syntactic categories mparen and lparen as a system of judgments and
inference rules:

ε mparen Meps
s mparen

(s) mparen
Mpar s1 mparen s2 mparen

s1 s2 mparen Mseq

ε lparen
Leps

s1 lparen s2 lparen

(s1) s2 lparen
Lseq

Our goal is to show that s mparen implies s lparen. It turns out that a direct proof attempt by rule
induction fails and that we need a lemma. To informally explain why we need a lemma, consider
the case where the rule Mseq is used to prove s mparen. We may write s = s1 s2 with s1 mparen and
s2 mparen. By induction hypothesis on s1 mparen and s2 mparen, we may conclude s1 lparen and s2 lparen.
From s1 lparen, there are two subcases to consider:

• If s1 = ε, then s = s1 s2 = s2 and s2 lparen implies s lparen.

• If s1 = (s′1) s
′′
1 with s′1 lparen and s′′1 lparen, then s = (s′1) s

′′
1 s2.

In the second subcase, it is necessary to prove s′′1 s2 lparen from s′′1 lparen and s2 lparen, which is not
addressed by what is being proven (and is not obvious). Thus the following lemma needs to be proven
first:

Lemma 2.7. If s lparen and s′ lparen, then s s′ lparen.

Then how do we prove the above lemma by rule induction? The lemma does not seem to be provable
by rule induction because it does not have the form “If J holds, then P (J) holds” — the If part contains
two judgments! It turns out, however, that rule induction can be applied exactly in the same way. The
trick is to interpret the statement in the lemma as:

If s lparen, then s′ lparen implies s s′ lparen.

Then we apply rule induction to the judgment s lparen with P (s lparen) being “s′ lparen implies s s′ lparen.”
An inductive proof of the lemma proceeds as follows:

Proof of Lemma 2.7. By rule induction on the judgment s lparen. Keep in mind that the induction hypoth-
esis on s lparen yields “s′ lparen implies s s′ lparen.” Consequently, if s′ lparen is already available as an
assumption, the induction hypothesis on s lparen yields s s′ lparen.

Case ε lparen
Leps where s = ε:

s′ lparen assumption
s s′ = ε s′ = s′

s s′ lparen from s′ lparen

Case
s1 lparen s2 lparen

(s1) s2 lparen
Lseq where s = (s1) s2:

s′ lparen assumption
s s′ = (s1) s2 s

′

“s′ lparen implies s2 s′ lparen” by induction hypothesis on s2 lparen
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s2 s
′ lparen from the assumption s′ lparen

(s1) s2 s
′ lparen by the rule Lseq with s1 lparen and s2 s′ lparen

Exercise 2.8. Can you prove Lemma 2.7 by rule induction on the judgment s′ lparen?

Now we are ready to prove that s mparen implies s lparen.

Theorem 2.9. If s mparen, then s lparen.

Proof. By rule induction on the the judgment s mparen.

Case ε mparen Meps where s = ε:
ε lparen by the rule Leps

Case
s′ mparen

(s′) mparen
Mpar where s = (s′):

s′ lparen by induction hypothesis

(s′) lparen from s′ lparen ε lparen
Leps

(s′) ε lparen
Lseq and (s′) = (s′) ε

Case
s1 mparen s2 mparen

s1 s2 mparen Mseq where s = s1 s2:
s1 lparen by induction hypothesis on s1 mparen

s2 lparen by induction hypothesis on s2 mparen

s1 s2 lparen by Lemma 2.7

2.5.2 Generalizing a theorem

We have seen in Theorem 2.4 that if a string s belongs to the syntactic category mparen, or if s mparen

holds, s has the same number of left and right parentheses, i.e., left [s] = right [s]. The result, however,
does not prove that s is a string of matched parentheses because it does not take into consideration
positions of matching parentheses. For example, s =)( satisfies left [s] = right [s], but is not a string of
matched parentheses because the left parenthesis appears after its corresponding right parenthesis.

In order to be able to recognize strings of matched parentheses, we introduce a new judgment k � s
where k is a non-negative integer:

k � s ⇔ k left parentheses concatenated with s form a string of matched parentheses
⇔ ((· · · (︸ ︷︷ ︸

k

s is a string of matched parentheses

The idea is that we scan a given string from left to right and keep counting the number of left parenthe-
ses that have not yet been matched with corresponding right parentheses. Thus we begin with k = 0,
increment k each time a left parenthesis is encountered, and decrement k each time a right parenthesis
is encountered:

0 � ε
Peps

k + 1 � s

k � (s
Pleft

k − 1 � s k > 0

k � )s
Pright

The second premise k > 0 in the rule Pright ensures that in any prefix of a given string, the number of
right parentheses may not exceed the number of left parentheses. Now a judgment 0 � s expresses that
s is a string of matched parentheses. Here are a couple of examples:

0 � ε
Peps

1 > 0
1 � )

Pright
2 > 0

2 � ))
Pright

1 � ())
Pleft

0 � (())
Pleft

(the rule Pright is not applicable because 0 6> 0 )
0 � )(

1 � ))(
Pright

0 � ())(
Pleft
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Note that while an inference rules is usually read from the premise to the conclusion, i.e., “if the
premise holds, then the conclusion follows,” the above rules are best read from the conclusion to the
premise: “in order to prove the conclusion, we prove the premise instead.” For example, the rule Peps

may be read as “in order to prove 0 � ε, we do not have to prove anything else,” which implies that
0 � ε automatically holds; the rule Pleft may be read as “in order to prove k� (s, we only have to prove
k + 1 � s.” This bottom-up reading of the rules corresponds to the left-to-right direction of scanning a
string. For example, a proof of 0� (()) would proceed as the following sequence of judgments in which
the given string is scanned from left to right:

0 � (()) −→ 1 � ()) −→ 2 � )) −→ 1 � ) −→ 0 � ε

Exercise 2.10. Rewrite the inference rules for the judgment k � s so that they are best read from the
premise to the conclusion.

Now we wish to prove that a string s satisfying 0�s indeed belongs to the syntactic category mparen:

Theorem 2.11. If 0 � s, then s mparen.

It is easy to see that a direct proof of Theorem 2.11 by rule induction fails. For example, when 0 � (s
follows from 1 � s by the rule Pleft , we cannot apply the induction hypothesis to the premise because it
does not have the form 0 � s′. What we need is, therefore, a generalization of Theorem 2.11 that covers
all cases of the judgment k � s instead of a particular case k = 0:

Lemma 2.12. If k � s, then ((· · · (︸ ︷︷ ︸
k

s mparen.

Lemma 2.12 formally verifies the intuition behind the general form of the judgment k � s. Then Theo-
rem 2.11 is obtained as a corollary of Lemma 2.12.

The proof of Lemma 2.12 requires another lemma whose proof is left as an exercise (see Exer-
cise 2.18):

Lemma 2.13. If ((· · · (︸ ︷︷ ︸
k

s mparen, then ((· · · (︸ ︷︷ ︸
k

()s mparen.

Proof of Lemma 2.12. By rule induction on the judgment k � s.

Case 0 � ε
Peps where k = 0 and s = ε:

ε mparen by the rule Meps

((· · · (︸ ︷︷ ︸
k

s mparen from ((· · · (︸ ︷︷ ︸
k

s = ε

Case
k + 1 � s′

k � (s′
Pleft where s = (s′:

((· · · (︸ ︷︷ ︸
k+1

s′ mparen by induction hypothesis on k + 1 � s′

((· · · (︸ ︷︷ ︸
k

s mparen from ((· · · (︸ ︷︷ ︸
k+1

s′ = ((· · · (︸ ︷︷ ︸
k

(s′ = ((· · · (︸ ︷︷ ︸
k

s

Case
k − 1 � s′ k > 0

k � )s′
Pright where s =)s′:

((· · · (︸ ︷︷ ︸
k−1

s′ mparen by induction hypothesis on k − 1 � s′

((· · · (︸ ︷︷ ︸
k−1

()s′ mparen by Lemma 2.13

((· · · (︸ ︷︷ ︸
k

s mparen from ((· · · (︸ ︷︷ ︸
k−1

()s′ = ((· · · (︸ ︷︷ ︸
k

)s′ = ((· · · (︸ ︷︷ ︸
k

s

It is important that generalizing a theorem is different from introducing a lemma. We introduce
a lemma when the induction hypothesis is applicable to all premises in an inductive proof, but the
conclusion to be drawn is not a direct consequence of induction hypotheses. Typically such a lemma,
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which fills the gap between induction hypotheses and the conclusion, requires another inductive proof
and is thus proven separately. In contrast, we generalize a theorem when the induction hypothesis is
not applicable to some premises and an inductive proof does not even work. Introducing a lemma is
to no avail here, since the induction hypothesis is applicable only to premises of inference rules and
nothing else (e.g., judgments proven by a lemma). Thus we generalize the theorem so that a direct
inductive proof works. (The proof of the generalized theorem may require us to introduce a lemma, of
course.)

To generalize a theorem is essentially to find a theorem that is harder to prove than, but immedi-
ately implies the original theorem. (In this regard, we can also say that we “strengthen” the theorem.)
There is no particular recipe for generalizing a theorem, and some problem requires a deep insight into
the judgment to which the induction hypothesis is to be applied. In many cases, however, identify-
ing an invariant on the judgment under consideration gives a clue on how to generalize the theorem.
For example, Theorem 2.11 deals with a special case of the judgment k � s, and its generalization in
Lemma 2.12 precisely expresses what the judgment k � s means.

2.5.3 Proof by the principle of inversion

Consider an inference rule
J1 J2 · · · Jn

J
R . In order to apply the ruleR, we first have to establish

proofs of all the premises J1 through Jn, from which we may judge that the conclusion J also holds.
An alternative way of reading the rule R is that in order to prove J , it suffices to prove J1, · · · , Jn. In
either case, it is the premises, not the conclusion, that we have to prove first.

Now assume the existence of a proof of the conclusion J . That is, we assume that J is provable,
but we may not have a concrete proof of it. Since the rule R is applied in the top-down direction, the
existence of a proof of J does not license us to conclude that the premises J1, · · · , Jn are also provable.

For example, there may be another rule, say
J ′

1 J ′
2 · · · Jm

J
R′ , that deduces the same conclusion,

but using different premises. In this case, we cannot be certain that the rule R has been applied at the
final step of the proof of J , and the existence of proofs of J1, · · · , Jn is not guaranteed.

If, however, the rule R is the only way to prove the conclusion J , we may safely “invert” the rule R
and deduce the premises J1, · · · , Jn from the existence of a proof of J . That is, since the rule R is the
only way to prove J , the existence of a proof of J is subject to the existence of proofs of all the premises
of the ruleR. Such a use of an inference rule in the bottom-up direction is called the principle of inversion.

As an example, let us prove that if S n is a natural number, so is n:

Proposition 2.14. If S n nat, then n nat.

We begin with an assumption that S n nat holds. Since the only way to prove S n nat is by the rule Succ,
S n nat must have been derived from n nat by the principle of inversion:

n nat
S n nat

Succ

Thus there must be a proof of n nat whenever there exists a proof of S n nat, which completes the proof
of Proposition 2.14.

2.6 Exercises

Exercise 2.15. Suppose that we represent a binary number as a sequence of digits 0 and 1. Give an
inductive definition of a syntactic category bin for positive binary numbers without a leading 0. For
example, 10 belongs to bin whereas 00 does not. Then define a function num which takes a sequence
b belonging to bin and returns its corresponding decimal number. For example, we have num(10) = 2
and num(110) = 6. You may use ε for the empty sequence.

Exercise 2.16. Prove the converse of Theorem 2.9: if s lparen, then s mparen.
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Exercise 2.17. Given a judgment t tree, we define two functions numLeaf (t) and numNode(t) for calcu-
lating the number of leaves and the number of nodes in t, respectively:

numLeaf (leaf n) = 1
numLeaf (node (t1, n, t2)) = numLeaf (t1) + numLeaf (t2)

numNode(leaf n) = 0
numNode(node (t1, n, t2)) = numNode(t1) + numNode(t2) + 1

Use rule induction to prove that if t tree, then numLeaf (t) − numNode(t) = 1.

Exercise 2.18. Prove a lemma: if ((· · · (︸ ︷︷ ︸
k

s lparen, then ((· · · (︸ ︷︷ ︸
k

()s lparen. Use this lemma to prove Lemma 2.13.

Your proof needs to exploit the equivalence between s mparen and s lparen as stated in Theorem 2.9 and
Exercise 2.16.

Exercise 2.19. Proof the converse of Theorem 2.11: if s mparen, then 0 � s.

Exercise 2.20. Consider an SML implementation of the factorial function:

fun fact’ 0 a = a
| fact’ n a = fact’ (n - 1) (n * a)

fun fact n = fact’ n 1

We wish to prove that fact n̂ evaluates to n̂! by mathematical induction on n ≥ 0, where n̂ stands for
an SML constant expression for a mathematical integer n. Since fact n̂ reduces to fact’ n̂ 1, we try
to prove a lemma that fact’ n̂ 1 evaluates to n̂!. Unfortunately it is impossible to prove the lemma
by mathematical induction on n. How would you generalize the lemma so that mathematical induction
works on n?

Exercise 2.21. The principle of mathematical induction states that for any natural number n, a judgment
P (n) holds if the following two conditions are met:

1. P (0) holds.

2. P (k) implies P (k + 1) where k ≥ 0.

There is another principle, called complete induction, which allows stronger assumptions in proving
P (k + 1):

1. P (0) holds.

2. P (0), P (1), · · · , P (k) imply P (k + 1) where k ≥ 0.

It turns out that complete induction is not a new principle; rather it is a derived principle which can
be justified by the principle of mathematical induction. Use mathematical induction to show that if the
two conditions for complete induction are met, P (n) holds for any natural number n.

Exercise 2.22. Consider the following inference rules for comparing two natural number for equality:

O
.
= O

EqZero
n
.
= m

S n
.
= Sm

EqSucc

Show that the following inference rule is admissible:

n
.
= m n double n′ m doublem′

n′ .= m′
EqDouble

Exercise 2.23. Consider yet another inductive definition of strings of matched parentheses where we
use a new judgment s tparen:

ε tparen
Teps

s1 tparen s2 tparen

s1 (s2) tparen
Tseq

Give a proof of the following lemma:
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Lemma 2.24. If s tparen and s′ tparen, then s s′ tparen.

Use Lemma 2.24 to prove the following theorem:

Theorem 2.25. If s mparen, then s tparen.

In conjunction with the result from Exercise 2.16, Theorem 2.25 proves that s lparen implies s tparen.
Now we wish to prove this result directly, i.e., without using the judgment s mparen:

Theorem 2.26. If s lparen, then s tparen.

Try to prove Theorem 2.26 by rule induction on s lparen. If you can complete the proof, write it. If you
need a lemma to complete the proof, state the lemma, prove it, and use it to complete the proof.

Exercise 2.27. Consider two SML implementations of the Fibonacci function. fib1 is an ordinary re-
cursive function whereas fib2 is a tail-recursive function. All arguments to both functions are assumed
to be natural numbers (which include zero).

fun fib1 0 = 0
| fib1 1 = 1
| fib1 n = fib1 (n - 1) + fib1 (n - 2) // n ≥ 2

fun fib2 m n 0 = m
| fib2 m n p = fib2 n (m + n) (p - 1) // p ≥ 1

Use mathematical induction or complete induction to prove the following properties. We assume that
every variable (p, z, m, n) ranges over natural numbers.

• fib2 (fib1 p) (fib1 (p + 1)) z = fib1 (z + p).

• fib2 m n (p + 1) = m * fib1 p + n * fib1 (p + 1).

• fib1 (2 * p) + fib1 p * fib1 p = 2 * fib1 p * fib1 (p + 1).

• fib1 (2 * p + 1) = fib1 p * fib1 p + fib1 (p + 1) * fib1 (p + 1).
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Chapter 3

λ-Calculus

This chapter presents the λ-calculus, a core calculus for functional languages (including SML of course).
It captures the essential mechanism of computation in functional languages, and thus serves as an
excellent framework for investigating basic concepts in functional languages. According to the Church-
Turing thesis, the λ-calculus is equally expressive as Turing machines, but its syntax is deceptively sim-
ple. We first discuss the syntax and semantics of the λ-calculus and then show how to write programs
in the λ-calculus.

Before we proceed, we briefly discuss the difference between concrete syntax and abstract syntax.
Concrete syntax specifies which string of characters is accepted as a valid program (causing no syntax
errors) or rejected as an invalid program (causing syntax errors). For example, according to the concrete
syntax of SML, a string ˜1 is interpreted as an integer −1, but a string -1 is interpreted as an infix
operator - applied to an integer argument 1 (which later causes a type error). A parser implementing
concrete syntax usually translates source programs into tree structures. For example, a source program
1 + 2 * 3 is translated into

+

1 *

2 3
after taking into account operator precedence rules. Such tree structures are called abstract syntax trees
which abstract away from details of parsing (such as operator precedence/associativity rules) and focus
on the structure of source programs; abstract syntax is just the syntax for such tree structures.

While concrete syntax is an integral part of designing a programming language, we will not discuss
it in this course. Instead we will work with abstract syntax to concentrate on computational aspects
of programming languages. For example, we do not discuss why 1 + 2 * 3 and 1 + (2 * 3),
both written in concrete syntax, are translated by the parser into the same abstract syntax tree shown
above. For the purpose of understanding how their computation proceeds, the abstract syntax tree
alone suffices.

3.1 Abstract syntax for the λ-calculus

The abstract syntax for the λ-calculus is given as follows:

expression e ::= x | λx. e | e e

• An expression x is called a variable. We may use other names for variables (e.g., z, s, t, f , arg ,
accum, and so on). Strictly speaking, therefore, x itself in the inductive definition of expression is a
metavariable.

• An expression λx. e is called a λ-abstraction, or just a function, which denotes a mathematical
function whose formal argument is x and whose body is e. We may think of λx. e as an internal
representation of a nameless SML function fn x => e in abstract syntax.
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We say that a variable x is bound in the λ-abstraction λx. e (just like a variable x is bound in an
SML function fn x => e). Alternatively we can say that x is a bound variable in the body e.

• An expression e1 e2 is called a λ-application or an application which denotes a function application
(if e1 is shown to be equivalent to a λ-abstraction somehow). We may think of e1 e2 as an internal
representation of an SML function application in abstract syntax. As in SML, applications are
left-associative: e1 e2 e3 means (e1 e2) e3 instead of e1 (e2 e3).

The scope of a λ-abstraction extends as far to the right as possible. Here are a few examples:

• λx. x y is the same expression as a λ-abstraction λx. (x y) whose body is x y. It should not be
understood as an application (λx. x) y.

• λx. λy. x y is the same expression as λx. λy. (x y) = λx. (λy. (x y)). It should not be understood as
an application (λx. λy. x) y.

As it turns out, every expression in the λ-calculus denotes a mathematical function. That is, the
denotation of every expression in the λ-calculus is a mathematical function. Section 3.2 discusses how
to determine unique mathematical functions corresponding to expressions in the λ-calculus, and in
the present section, we develop the intuition behind the λ-calculus by considering a few examples of
λ-abstractions.

Our first example is an identity function:

id = λx. x

id is an identity function because when given an argument x, it returns x without any further computa-
tion. Like higher-order functions in SML, a λ-abstraction may return another λ-abstraction as its result.
For example, tt belows takes t to return another λ-abstraction λf. t which ignores its argument; ff below
ignores its argument t to return a λ-abstraction λf. f :

tt = λt. λf. t = λt. (λf. t)
ff = λt. λf. f = λt. (λf. f)

Similarly a λ-abstraction may expect another λ-abstraction as its argument. For example, the λ-abstraction
below expects another λ-abstraction s which is later applied to z:

one = λs. λz. s z = λs. (λz. (s z))

3.2 Operational semantics of the λ-calculus
The semantics of a programming language answers the question of “what is the meaning of a given
program?” This is an important question in the design of programming languages because lack of for-
mal semantics implies potential ambiguities in interpreting programs. Put another way, lack of formal
semantics makes it impossible to determine the meaning of certain programs. Surprisingly not every
programming language has its semantics. For example (and perhaps to your surprise), the C language
has no formal semantics — the same C program may exhibit different behavior depending on the state
of the machine on which the program is executed.

There are three approaches to formulating the semantics of programming languages: denotational
semantics, axiomatic semantics, and operational semantics. Throughout this course, we will use exclusively
the operational semantics approach for its close connection with judgments and inference rules. The
operational semantics approach is also attractive because it directly reflects the implementation of pro-
gramming languages (e.g., interpreters or compilers).

In general, the operational semantics of a programming language specifies how to transform a
program into a value via a sequence of “operations.” In the case of the λ-calculus, values consist of
λ-abstractions and “operations” are called reductions. Thus the operational semantics of the λ-calculus
specifies how to reduce an expression e into a value v where v is defined as follows:

value v ::= λx. e
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Then we take v as the meaning of e. Since a λ-abstraction denotes a mathematical function, it follows
that every expression in the λ-calculus denotes a mathematical function.

With this idea in mind, let us formally define reductions of expressions. We introduce a reduction
judgment of the form e 7→ e′:1

e 7→ e′ ⇔ e reduces to e′

We write 7→∗ for the reflexive and transitive closure of 7→ . That is, e 7→∗ e′ holds if e 7→ e1 7→ · · · 7→
en = e′ where n ≥ 0. (See Exercise 3.11 for a formal definition of 7→∗ .) We say that e evaluates to v if
e 7→∗ v holds.

Before we provide inference rules to complete the definition of the judgment e 7→ e′, let us see what
kind of expression can be reduced to another expression. Clearly variables and λ-abstractions cannot
be further reduced:

x 67→ ·
λx. e 67→ ·

(e 67→ · means that e does not reduce to another expression.) Then when can we reduce an application
e1 e2? If we think of it as an internal representation of an SML function application, we can reduce it
only if e1 represents an SML function. Thus the only candidate for reduction is an application of the
form (λx. e′1) e2.

If we think of λx. e′1 as a mathematical function whose formal argument is x and whose body is
e′1, the most natural way to reduce (λx. e′1) e2 is by substituting e2 for every occurrence of x in e′1, or
equivalently, by replacing every occurrence of x in e′1 by e2. (For now, we do not consider the issue of
whether e2 is a value or not.) To this end, we introduce a substitution [e′/x]e:

[e′/x]e is defined as an expression obtained by substituting e′ for every occurrence of x in e.

[e′/x]emay also be read as “applying a substitution [e′/x] to e.” Then the following reduction is justified

(λx. e) e′ 7→ [e′/x]e

where the expression being reduced, namely (λx. e) e′, is called a redex (reducible expression). For his-
torical reasons, the above reduction is called a β-reduction.

Simple as it may seem, the precise definition of [e′/x]e is remarkably subtle (see Section 3.3). For now,
we just avoid complex examples whose reduction would require the precise definition of substitution.
Here are a few examples of β-reductions; the redex for each step is underlined:

(λx. x) (λy. y) 7→ λy. y

(λt. λf. t) (λx. x) (λy. y) 7→ (λf. λx. x) (λy. y) 7→ λx. x

(λt. λf. f ) (λx. x) (λy. y) 7→ (λf. f) (λy. y) 7→ λy. y

(λs. λz. s z) (λx. x) (λy. y) 7→ (λz. (λx. x) z) (λy. y) 7→ (λx. x) (λy. y) 7→ λy. y

The β-reduction is the basic principle for reducing expressions, but it does not yield unique infer-
ence rules for the judgment e 7→ e′. That is, there can be more than one way to apply the β-reduction
to an expression, or equivalently, an expression may contain multiple redexes in it. For example,
(λx. x) ((λy. y) (λz. z)) contains two redexes in it:

(λx. x) ((λy. y) (λz. z)) 7→ (λy. y) (λz. z) 7→ λz. z

(λx. x) ((λy. y) (λz. z)) 7→ (λx. x) (λz. z) 7→ λz. z

In the first case, the expression being reduced has the form (λx. e) e′ and we immediately apply the
β-reduction to the whole expression to obtain [e′/x]e. In the second case, we apply the β-reduction to e′
which happens to be a redex; if e′ was not a redex (e.g., e′ = λt. t), the second case would be impossible.
Here is another example of an expression containing two redexes:

(λs. λz. s z) ((λx. x) (λy. y)) 7→ λz. ((λx. x) (λy. y)) z 7→ λz. (λy. y) z 7→ λz. z

(λs. λz. s z) ((λx. x) (λy. y)) 7→ (λs. λz. s z) (λy. y) 7→ λz. (λy. y) z 7→ λz. z

1After all, the notion of judgment that we learned in Chapter 2 is not really useless!
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In the course of reducing an expression to a value, therefore, we may be able to apply the β-reduction
in many different ways. As we do not want to apply the β-reduction in an arbitrary way, we need a
certain reduction strategy so as to apply the β-reduction in a systematic way.

In this course, we consider two reduction strategies: call-by-name and call-by-value. The call-by-name
strategy always reduces the leftmost and outermost redex. To be specific, given an expression e1 e2, it
checks if e1 is a λ-abstraction λx. e′1. If so, it applies the β-reduction to the whole expression to obtain
[e2/x]e

′
1. Otherwise it attempts to reduce e1 using the same reduction strategy without considering

e2; when e1 later reduces to a value (which must be a λ-abstraction), it applies the β-reduction to the
whole expression. Consequently the second subexpression in an application (e.g., e2 in e1 e2) is never
reduced. The call-by-value strategy is similar to the call-by-name strategy, but it reduces the second
subexpression in an application to a value v after reducing the first subexpression. Hence the call-by-
value strategy applies the β-reduction to an application of the form (λx. e) v only. Note that neither
strategy reduces expressions inside a λ-abstraction, which implies that values are not further reduced.

As an example, let us consider an expression (id1 id2) (id3 (λz. id4 z)) which reduces in different
ways under the two reduction strategies; idi is an abbreviation of an identity function λxi. xi:

call-by-name call-by-value
(id1 id2) (id3 (λz. id4 z))

7→ id2 (id3 (λz. id4 z))

7→ id3 (λz. id4 z)

7→ λz. id4 z

(id1 id2) (id3 (λz. id4 z))
7→ id2 (id3 (λz. id4 z))

7→ id2 (λz. id4 z)

7→ (λz. id4 z)

The reduction diverges in the second step: the call-by-name strategy applies the β-reduction to the
whole expression because it does not need to inspect the second subexpression id3 (λz. id4 z) whereas
the call-by-value strategy chooses to reduce the second subexpression which is not a value yet.

Now we are ready to provide inference rules for the judgment e 7→ e′, which we refer to as reduction
rules. The call-by-name strategy uses two reduction rules (Lam for Lambda and App for Application):

e1 7→ e′1
e1 e2 7→ e′1 e2

Lam
(λx. e) e′ 7→ [e′/x]e

App

The call-by-value strategy uses an additional rule to reduce second subexpression in applications; we
reuse the reduction rule names from the call-by-name strategy (Arg for Argument):

e1 7→ e′1
e1 e2 7→ e′1 e2

Lam
e2 7→ e′2

(λx. e) e2 7→ (λx. e) e′2
Arg

(λx. e) v 7→ [v/x]e
App

A drawback of the call-by-name strategy is that the same expression may be evaluated multiple
times. For example, (λx. x x) ((λy. y) (λz. z)) evaluates (λy. y) (λz. z) to λz. z eventually twice:

(λx. x x) ((λy. y) (λz. z))

7→ ((λy. y) (λz. z)) ((λy. y) (λz. z))

7→ (λz. z) ((λy. y) (λz. z))

7→ (λy. y) (λz. z)

7→ λz. z

In the case of the call-by-value strategy, (λy. y) (λz. z) is evaluated only once:

(λx. x x) ((λy. y) (λz. z))

7→ (λx. x x) (λz. z)

7→ (λz. z) (λz. z)

7→ λz. z
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On the other hand, the call-by-name strategy never evaluates expressions that do not contribute to
evaluations. For example,

(λt. λf. f ) ((λy. y) (λz. z)) ((λy′. y′) (λz′. z′))

does not evaluate (λy. y) (λz. z) at all because it is not used in the evaluation:

(λt. λf. f ) ((λy. y) (λz. z)) ((λy′. y′) (λz′. z′))

7→ (λf. f) ((λy′. y′) (λz′. z′))

7→ · · ·

The call-by-value strategy evaluates (λy. y) (λz. z), but the result λz. z is ignored in the next reduction:

(λt. λf. f ) ((λy. y) (λz. z)) ((λy′. y′) (λz′. z′))

7→ (λt. λf. f ) (λz. z) ((λy′. y′) (λz′. z′))

7→ (λf. f) ((λy′. y′) (λz′. z′))

7→ · · ·

The call-by-name strategy is adopted by the functional language Haskell. Haskell is called a lazy
or non-strict functional language because it evaluates arguments to functions only if necessary (i.e.,
“lazily”). The actual implementation of Haskell uses another reduction strategy called call-by-need,
which is semantically equivalent to the call-by-name strategy but never evaluates the same expression
more than once. The call-by-value strategy is adopted by SML which is called an eager or strict functional
language because it always evaluates arguments to functions regardless of whether they are actually
used in function bodies or not (i.e., “eagerly”).

We say that an expression is in normal form if no reduction rule is applicable. Clearly every value
(which is a λ-abstraction in the case of the λ-calculus) is in normal form. There are, however, expressions
in normal form that are not values. For example, x λy. y is in normal form because x cannot be further
reduced, but it is not a value either. We say that such expression is stuck or its reduction gets stuck.
A stuck expression may be thought of as an ill-formed program, and ideally should not arise during
an evaluation. Chapter 4 presents an extension of the λ-calculus which statically (i.e., at compile time)
guarantees that a program satisfying a certain criterion never gets stuck.

3.3 Substitution
This section presents a definition of substitution [e′/x]e to complete the operational semantics of the
λ-calculus. While an informal interpretation of [e′/x]e is obvious, its formal definition is a lot trickier
than it appears.

First we need the notion of free variable which is the opposite of the notion of bound variable and
plays a key role in the definition of substitution. A free variable is a variable that is not bound in any
enclosing λ-abstraction. For example, y in λx. y is a free variable because no λ-abstraction of the form
λy. e encloses its occurrence. To formalize the notion of free variable, we introduce a mapping FV(e) to
mean the set of free variables in e:

FV(x) = {x}
FV(λx. e) = FV(e) − {x}
FV(e1 e2) = FV(e1) ∪ FV(e2)

Since a variable is either free or bound, a variable x in e such that x 6∈ FV(e) must be bound in some
λ-abstraction. We say that an expression e is closed if it contains no free variables, i.e., FV(e) = ∅. Here
are a few examples:

FV(λx. x) = {}
FV(x y) = {x, y}

FV(λx. x y) = {y}
FV(λy. λx. x y) = {}

FV((λx. x y) (λx. x z)) = {y, z}
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A substitution [e/x]e′ is defined inductively with the following cases:

[e/x]x = e
[e/x]y = y if x 6= y

[e/x](e1 e2) = [e/x]e1 [e/x]e2

In order to give the definition of the remaining case [e/x]λy. e′, we need to understand two properties of
variables. The first property is that the name of a bound variable does not matter, which also conforms
to our intuition. For example, an identity function λx. x inside an expression e may be rewritten as
λy. y for an arbitrary variable y without changing the intended meaning of e, since both λx. x and
λy. y denote an identity function. Another example is to rewrite λx. λy. x y as λy. λx. y x where both
expressions denote the same function that applies the first argument to the second argument.

Formally we use a judgment e ≡α e
′ to mean that e can be rewritten as e′ by renaming bound vari-

ables in e and vice versa. Here are examples of e ≡α e
′:

λx. x ≡α λy. y
λx. λy. x y ≡α λz. λy. z y
λx. λy. x y ≡α λx. λz. x z
λx. λy. x y ≡α λy. λx. y x

By a historical accident, ≡α is called the α-equivalence relation, or we say that an α-conversion of e into e′
rewrites e as e′ by renaming bound variables in e. It turns out that a definition of e ≡α e

′ is also tricky
to develop, which is given at the end of the present section.

The first property justifies the following case of substitution:

[e′/x]λx. e = λx. e

Intuitively, if we rewrite λx. e as another λ-abstraction of the form λy. e′′ where y is a fresh variable such
that x 6= y, the substitution [e′/x] is effectively ignored because x is found nowhere in λy. e′′. Here is a
simple example with e = x:

[e′/x]λx. x ≡α [e′/x]λy. y
= λy. y
≡α λx. x

A generalization of the case is that [e′/x] has no effect on e if x is not a free variable in e:

[e′/x]e = e if x 6∈ FV(e)

That is, we want to apply [e′/x] to e only if x is a free variable in e.
The second property is that a free variable x in an expression e never turns into a bound variable;

when explicitly replaced by another expression e′, as in [e′/x]e, it simply disappears. To better under-
stand the second property, let us consider a naive definition of [e′/x]λy. e where y may or may not be a
free variable in e′:

[e′/x]λy. e = λy. [e′/x]e if x 6= y

Now, if y is a free variable in e′, it automatically becomes a bound variable in λy. [e′/x]e, which is not
acceptable. Here is an example showing such an anomaly:

(λx. λy. x) y 7→ [y/x]λy. x = λy. [y/x]x = λy. y

Before the substitution, λy. x is a λ-abstraction that ignores its argument and returns x, but after the
substitution, it turns into an identity function! What happens in the example is that a free variable y to
be substituted for x is supposed to remain free after the substitution, but is accidentally captured by the
λ-abstraction λy. x and becomes a bound variable. Such a phenomenon is called a variable capture which
destroys the intuition that a free variable remains free unless it is replaced by another expression. This
observation is generalized in the following definition of [e′/x]λy. e which is called a capture-avoiding
substitution:

[e′/x]λy. e = λy. [e′/x]e if x 6= y, y 6∈ FV(e′)
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If a variable capture occurs because y ∈ FV(e′), we rename y to another variable that is not free
in e. For example, (λx. λy. x y) y can be safely reduced after renaming the bound variable y to a fresh
variable z:

(λx. λy. x y) y 7→ [y/x]λy. x y ≡α [y/x]λz. x z = λz. y z

In the literature, the unqualified term “substitution” universally means a capture-avoiding substitution
which renames bound variables as necessary.

Now we give a definition of the judgment e ≡α e
′. We need the notion of variable swapping [x ↔

y]e which is obtained by replacing all occurrences of x in e by y and all occurrences of y in e by x.
We emphasize that “all” occurrences include even those next to λ in λ-abstractions, which makes it
straightforward to implement [x↔y]e. Here is an example:

[x↔y]λx. λy. x y = λy. [x↔y]λy. x y = λy. λx. [x↔y](x y) = λy. λx. y x

The definition of e ≡α e
′ is given inductively by the following inference rules:

x ≡α x
Varα

e1 ≡α e
′
1 e2 ≡α e

′
2

e1 e2 ≡α e
′
1 e

′
2

Appα

e ≡α e
′

λx. e ≡α λx. e
′

Lamα

x 6= y y 6∈ FV(e) [x↔y]e ≡α e
′

λx. e ≡α λy. e
′ Lam ′

α

The rule Lamα says that to compare λx. e and λx. e′ which bind the same variable, we compare their
bodies e and e′. To compare two λ-abstractions binding different variables, we use the rule Lam ′

α.
To see why the rule Lam ′

α works, we need to understand the implication of the premise y 6∈ FV(e).
Since y 6∈ FV(e) implies y 6∈ FV(λx. e) and we have x 6∈ FV(λx. e), an outside observer would notice no
difference even if the two variables x and y were literally swapped in λx. e. In other words, λx. e and
[x↔y]λx. e are effectively the same from the point of view of an outside observer. Since [x↔y]λx. e =
λy. [x↔y]e, we compare [x↔ y]e with e′, which is precisely the third premise in the rule Lam ′

α. As an
example, here is a proof of λx. λy. x y ≡α λy. λx. y x:

x 6= y y 6∈ FV(λy. x y)

y ≡α y
Varα x ≡α x

Varα

y x ≡α y x
Appα

λx. y x ≡α λx. y x
Lamα

λx. λy. x y ≡α λy. λx. y x
Lam ′

α

Exercise 3.1. Can we prove λx. e ≡α λy. e
′ when x 6= y and y ∈ FV(e)?

Exercise 3.2. Suppose x 6∈ FV(e) and y 6∈ FV(e). Prove e ≡α [x↔y]e.

Finally we give a complete definition of substitution:

[e/x]x = e
[e/x]y = y if x 6= y

[e/x](e1 e2) = [e/x]e1 [e/x]e2
[e′/x]λx. e = λx. e
[e′/x]λy. e = λy. [e′/x]e if x 6= y, y 6∈ FV(e′)
[e′/x]λy. e = λz. [e′/x][y↔z]e if x 6= y, y ∈ FV(e′)

where z 6= y, z 6∈ FV(e), z 6= x, z 6∈ FV(e′)

The last equation implies that if y is a free variable in e′, we choose another variable z satisfying the
where clause and rewrite λy. e as λz. [y↔z]e by α-conversion:

y 6= z z 6∈ FV(e) [y↔z]e ≡α [y↔z]e

λy. e ≡α λz. [y↔z]e
Lam ′

α
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Then z 6∈ FV(e′) allows us to rewrite [e′/x]λz. [y↔z]e as λz. [e′/x][y↔z]e. In a typical implementation,
we obtain such a variable z just by generating a fresh variable. In such a case, replacing z by y never
occurs and thus the last equation can be written as follows:

[e′/x]λy. e = λz. [e′/x][z/y]e

The new equation is less efficient, however. Consider e = x y (λy. x y) for example. [y ↔ z]e gives
x z (λz. x z) and [e′/x][y↔z]e encounters no variable capture:

[e′/x][y↔z]e = [e′/x](x z (λz. x z)) = e′ z (λz. e′ z)

In contrast, [z/y]e gives x z (λy. x y) and [e′/x][z/y]e again encounters a variable capture in [e′/x]λy. x y:

[e′/x][z/y]e = [e′/x](x z (λy. x y)) = e′ z [e′/x](λy. x y)

So we have to generate another fresh variable!

Exercise 3.3. What is the result of α-converting each expression in the left where a fresh variable to be
generated in the conversion is provided in the right? Which expression is impossible to α-convert?

λx. λx′. x x′ ≡α λx′.
λx. λx′. x x′ x′′ ≡α λx′.
λx. λx′. x x′ x′′ ≡α λx′′.

3.4 Programming in the λ-calculus
In order to develop the λ-calculus to a full-fledged functional language, we need to show how to encode
common datatypes such as boolean values, integers, and lists in the λ-calculus. Since all values in the
λ-calculus are λ-abstractions, all such datatypes are also encoded with λ-abstractions. Once we show
how to encode specific datatypes, we may use them as if they were built-in datatypes.

3.4.1 Church booleans
The inherent capability of a boolean value is to choose one of two different options. For example, a
boolean truth chooses the first of two different options, as in an SML expression if true then e1
else e2. Thus boolean values in the λ-calculus, called Church booleans, are written as follows:

tt = λt. λf. t
ff = λt. λf. f

Then a conditional construct if e then e1 else e2 is defined as follows:

if e then e1 else e2 = e e1 e2

Here are examples of reducing conditional constructs under the call-by-name strategy:

if tt then e1 else e2 = tt e1 e2 = (λt. λf. t) e1 e2 7→ (λf. e1) e2 7→ e1
if ff then e1 else e2 = ff e1 e2 = (λt. λf. f) e1 e2 7→ (λf. f) e2 7→ e2

Logical operators on boolean values are defined as follows:

and = λx. λy. x y ff

or = λx. λy. x tt y
not = λx. x ff tt

As an example, here are sequences of reductions of and e1 e2 when e1 7→∗ tt and e1 7→∗ ff, respectively,
under the call-by-name strategy:

and e1 e2 and e1 e2
7→∗ e1 e2 ff 7→∗ e1 e2 ff

7→∗ tt e2 ff 7→∗ ff e2 ff

7→∗ e2 7→∗ ff

The left sequence shows that when e1 7→∗ tt holds, and e1 e2 denotes the same truth value as e2. The
right sequence shows that when e1 7→∗ ff holds, and e1 e2 evaluates to ff regardless of e2.
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Exercise 3.4. Consider the conditional construct if e then e1 else e2 defined as e e1 e2 under the call-by-
value strategy. How is it different from the conditional construct in SML?

Exercise 3.5. Define the logical operator xor. An easy way to define it is to use a conditional construct
and the logical operator not.

3.4.2 Pairs
The inherent capability of a pair is to carry two unrelated values and to retrieve either value when
requested. Thus, in order to represent a pair of e1 and e2, we build a λ-abstraction which returns e1 and
e2 when applied to tt and ff, respectively. Projection operators treat a pair as a λ-abstraction and applies
it to either tt or ff .

pair = λx. λy. λb. b x y
fst = λp. p tt

snd = λp. p ff

As an example, let us reduce fst (pair e1 e2) under the call-by-name strategy. Note that pair e1 e2
evaluates to λb. b e1 e2 which expects a boolean value for b in order to select either e1 or e2. If tt is
substituted for b, then b e1 e2 reduces to e1.

fst (pair e1 e2) 7→ (pair e1 e2) tt

7→∗ (λb. b e1 e2) tt

7→ tt e1 e2
7→∗ e1

3.4.3 Church numerals
The inherent capability of a natural number n is to repeat a given process n times. In the case of the λ-
calculus, n is encoded as a λ-abstraction n̂, called a Church numeral, that takes a function f and returns
fn = f ◦ f · · · ◦ f (n times). Note that f 0 is an identity function λx. x because f is applied 0 times to its
argument x, and that 1̂ itself is an identity function λf. f .

0̂ = λf. f0 = λf. λx. x

1̂ = λf. f1 = λf. λx. f x

2̂ = λf. f2 = λf. λx. f (f x)

3̂ = λf. f3 = λf. λx. f (f (f x))
· · ·

n̂ = λf. fn = λf. λx. f (f (f · · · (f x) · · · ))

If we read f as S and x as O, n̂ f x returns the representation of the natural number n shown in Chapter 2.
Now let us define arithmetic operations on natural numbers. The addition operation add m̂ n̂ returns

m̂+ n which is a λ-abstraction taking a function f and returning fm+n. Since fm+n may be written as
λx. fm+n x, we develop add as follows; in order to differentiate natural numbers (e.g., n) from their
encoded form (e.g., n̂), we use m̂ and n̂ as variables:

add = λm̂. λn̂. λf. fm+n

= λm̂. λn̂. λf. λx. fm+n x
= λm̂. λn̂. λf. λx. fm (fn x)
= λm̂. λn̂. λf. λx. m̂ f (n̂ f x)

Note that fm is obtained as m̂ f (and similarly for fn).

Exercise 3.6. Define the multiplication operation mult m̂ n̂ which returns m̂ ∗ n.

The multiplication operation can be defined in two ways. An easy way is to exploit the equation
m ∗ n = m + m + · · · + m (n times). That is, m ∗ n is obtained by adding m to zero exactly n times.
Since add m̂ is conceptually a function adding m to its argument, we apply add m̂ to 0̂ exactly n times to
obtain m̂ ∗ n, or equivalently apply (add m̂)n to 0̂:

mult = λm̂. λn̂. (add m̂)n 0̂

= λm̂. λn̂. n̂ (add m̂) 0̂
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An alternative way (which may in fact be easier to figure out than the first solution) is to exploit the
equation fm∗n = (fm)n = (m̂ f)n = n̂ (m̂ f):

mult = λm̂. λn̂. λf. n̂ (m̂ f)

The subtraction operation is more difficult to define than the previous two operations. Suppose
that we have a predecessor function pred computing the predecessor of a given natural number: pred n̂

returns n̂− 1 if n > 0 and 0̂ otherwise. To define the subtraction operation sub m̂ n̂ which returns m̂− n
if m > n and 0̂ otherwise, we apply pred to m̂ exactly n times:

sub = λm̂. λn̂. predn m̂
= λm̂. λn̂. (n̂ pred) m̂

Exercise 3.7. Define the predecessor function pred. Use an idea similar to the one used in a tail-recursive
implementation of the Fibonacci function.

The predecessor function pred uses an auxiliary function next which takes pair k̂ m̂, ignores k̂, and
returns pair m̂ m̂+ 1:

next = λp. pair (snd p) (add (snd p) 1̂)

It can be shown that by applying next to pair 0̂ 0̂ exactly n times, we obtain pair n̂− 1 n̂ if n > 0 (under
a certain reduction strategy):

next0 (pair 0̂ 0̂) 7→∗ pair 0̂ 0̂

next1 (pair 0̂ 0̂) 7→∗ pair 0̂ 1̂

next2 (pair 0̂ 0̂) 7→∗ pair 1̂ 2̂
...

nextn (pair 0̂ 0̂) 7→∗ pair n̂− 1 n̂

Since the predecessor of 0 is 0 anyway, the first component of nextn (pair 0̂ 0̂) encodes the predecessor
of n. Thus pred is defined as follows:

pred = λn̂. fst (nextn (pair 0̂ 0̂))

= λn̂. fst (n̂ next (pair 0̂ 0̂))

Exercise 3.8. Define a function isZero = λn̂. · · · which tests if a given Church numeral is 0̂. Use it to
define another function eq = λm̂. λn̂. · · · which tests if two given Church numerals are equal.

3.5 Fixed point combinator
Since the λ-calculus is equally powerful as Turing machines, every Turing machine can be simulated by
a certain expression in the λ-calculus. In particular, there are expressions in the λ-calculus that corre-
spond to Turing machines that do not terminate and Turing machines that compute recursive functions.

It is relatively easy to find an expression whose reduction does not terminate. Suppose that we wish
to find an expression omega such that omega 7→ omega. Since it reduces to the same expression, its
reduction never terminates. We rewrite omega as (λx. e) e′ so that the β-reduction can be applied to the
whole expression omega. Then we have

omega = (λx. e) e′ 7→ [e′/x]e = omega.

Now omega = [e′/x]e = (λx. e) e′ suggests e = e′′ x for some expression e′′ such that [e′/x]e′′ = λx. e
(and [e′/x]x = e′):

omega = [e′/x]e
= [e′/x](e′′ x) from e = e′′ x
= [e′/x]e′′ [e′/x]x
= [e′/x]e′′ e′

= (λx. e) e′ from [e′/x]e′′ = λx. e
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From e = e′′ x and [e′/x]e′′ = λx. e, we obtain [e′/x]e′′ = λx. e′′ x. By letting e′′ = x in [e′/x]e′′ =
λx. e′′ x, we obtain e′ = λx. x x. Then omega can be defined as follows:

omega = (λx. e) e′

= (λx. e′′ x) e′ from e = e′′ x
= (λx. x x) e′ from e′′ = x
= (λx. x x) (λx. x x) from e′ = λx. x x

Now it can be shown that the reduction of omega defined as above never terminates.
Then how do we write recursive functions in the λ-calculus? We begin by assuming a recursive

function construct fun f x. e which defines a recursive function f whose argument is x and whose body
is e. Note that the body e may contain references to f . Our goal is to show that fun f x. e is syntactic
sugar (which dissolves in the λ-calculus) in the sense that it can be rewritten as an existing expression
in the λ-calculus and thus its addition does not increase the expressive power of the λ-calculus.

As a working example, we use a factorial function fac:

fac = fun f n. if eq n 0̂ then 1̂ else mult n (f (pred n))

Semantically f in the body refers to the very function fac being defined. First we mechanically derive a
λ-abstraction FAC = λf. λn. e from fac = fun f n. e:

FAC = λf. λn. if eq n 0̂ then 1̂ else mult n (f (pred n))

Note that FAC has totally different characteristics than fac: while fac takes a natural number n to return
another natural number, FAC takes a function f to return another function. (If fac and FAC were allowed
to have types, fac would have type nat→nat whereas FAC would have type (nat→nat)→(nat→nat).)

The key idea behind constructing FAC is that given a partial implementation f of the factorial func-
tion, FAC f returns an improved implementation of the factorial function. Suppose that f correctly com-
putes the factorial of any natural number up to n. Then FAC f correctly computes the factorial of any
natural number up to n + 1, which is an improvement over f . Note also that FAC f correctly com-
putes the factorial of 0 regardless of f . In particular, even when given a least informative function
f = λn. omega (which does nothing because it never returns), FAC f correctly computes the factorial
of 0. Thus we can imagine an infinite chain of functions {fac0, fac1, · · · , faci, · · · } which begins with
fac0 = FAC λn. omega and repeatedly applies the equation faci+1 = FAC faci:

fac0 = FAC λn. omega

fac1 = FAC fac0 = FAC2 λn. omega

fac2 = FAC fac1 = FAC3 λn. omega
...

faci = FAC faci−1 = FACi+1 λn. omega
...

Note that faci correctly computes the factorial of any natural number up to i. Then, if ω denotes an infi-
nite natural number (greater than any natural number), we may take facω as a correct implementation
of the factorial function fac, i.e., fac = facω.

Another important observation is that given a correct implementation fac of the factorial function,
FAC fac returns another correct implementation of the factorial function, That is, if fac is a correct im-
plementation of the factorial function,

λn. if eq n 0̂ then 1̂ else mult n (fac (pred n))

is also a correct implementation of the factorial function. Since the two functions are essentially identical
in that both return the same result for any argument, we may let fac = FAC fac. If we substitute facω for
fac in the equation, we obtain facω = facω+1 which also makes sense because ω ≤ ω+1 by the definition
of + and ω + 1 ≤ ω by the definition of ω (which is greater than any natural number including ω + 1).

Now it seems that FAC contains all necessary information to derive fac = facω = FAC fac, but exactly
how? It turns out that fac is obtained by applying the fixed point combinator fix to FAC, i.e., fac = fix FAC,
where fix is defined as follows:

fix = λF. (λf. F (λx. f f x)) (λf. F (λx. f f x))
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Here we assume the call-by-value strategy; for the call-by-name strategy, we simplify λx. f f x into f f
and use the following fixed point combinator fixCBN:

fixCBN = λF. (λf. F (f f)) (λf. F (f f))

To understand how the fixed point combinator fix works, we need to learn the concept of fixed point.
A fixed point of a function f is a value v such that v = f(v). For example, the fixed point of a function
f(x) = 2 − x is 1 because 1 = f(1). As its name suggests, fix takes a function F (which itself transforms
a function f into another function f ′) and returns its fixed point. That is, fix F is a fixed point of F :

fix F = F (fix F )

Informally the left expression transforms into the right expression via the following steps; we use a
symbol ≈ to emphasize “informally” because the transformation is not completely justified by the β-
reduction alone:

fix F 7→ g g where g = λf. F (λx. f f x)
= (λf. F (λx. f f x)) g
7→ F (λx. g g x)
≈ F (g g) because λx. g g x ≈ g g
≈ F (fix F ) because fix F 7→ g g

Now we can explain why fix FAC gives an implementation of the factorial function. By the nature of
the fixed point combinator fix, we have

fix FAC = FAC (fix FAC).

That is, fix FAC returns a function f satisfying f = FACf , which is precisely the property that fac needs
to satisfy! Therefore we take fix FAC as an equivalent of fac.2

An alternative way to explain the behavior of fix FAC is as follows. Suppose that we wish to compute
fac n for an arbitrary natural number n. Since fix FAC is a fixed point of FAC, we have the following
equation:

fix FAC = FAC (fix FAC)

= FAC (FAC (fix FAC)) = FAC2 (fix FAC)

= FAC2 (FAC (fix FAC)) = FAC3 (fix FAC)
...
= FACn (FAC (fix FAC)) = FACn+1 (fix FAC)

The key observation is that FACn+1 (fix FAC) correctly computes the factorial of any natural number up
to n regardless of what fix FAC does (see Page 45). Since we have fix FAC = FACn+1 (fix FAC), it follows that
fix FAC correctly computes the factorial of an arbitrary natural number. That is, fix FAC does precisely
what fac does.

In summary, in order to encode a recursive function fun f x. e in the λ-calculus, we first derive a
λ-abstraction F = λf. λx. e. Then fix F automagically returns a function that exhibits the same behavior
as fun f x. e does.

Exercise 3.9. Under the call-by-value strategy, fac, or equivalently fix FAC, never terminates when
applied to any natural number! Why? (Hint: Exercise 3.4)

3.6 Deriving the fixed point combinator
This section explains how to derive the fixed point combinator. As its formal derivation is extremely
intricate, we will illustrate the key idea with an example. Students may choose to skip this section if
they wish.

2 The fixed point combinator fix actually yields what is called the least fixed point. That is, a function F may have many fixed
points and fix returns the least one in the sense that the least one is the most informative one. The least fixed point is what we
usually expect.
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Let us try to write a factorial function fac without using the fixed point combinator. Consider the
following function facwrong:

facwrong = λn. if eq n 0̂ then 1̂ else mult n (f (pred n))

facwrong is simply wrong because its body contains a reference to an unbound variable f . If, however, f
points to a correct implementation fac of the factorial function, facwrong would also be a correct imple-
mentation. Since there is no way to use a free variable f in reducing an expression, we have to introduce
it in a λ-abstraction anyway:

FAC = λf. λn. if eq n 0̂ then 1̂ else mult n (f (pred n))

FAC is definitely an improvement over facwrong, but it is not a function taking a natural number;
rather it takes a function f to return another function which refines f . More importantly, there seems
to be no way to make a recursive call with FAC because FAC calls only its argument f in its body and
never makes a recursive call to itself.

Then how do we make a recursive call with FAC? The problem at hand is that the body of FAC, which
needs to call fac, calls only its argument f . Our instinct, however, says that FAC contains all necessary
information to derive fac (i.e., FAC ≈ fac) because its body resembles a typical implementation of the
factorial function. Thus we are led to try substituting FAC itself for f . That is, we make a call to FAC

using FAC itself as an argument — what a crazy idea it is!:

FAC FAC = λn. if eq n 0̂ then 1̂ else mult n (FAC (pred n))

Unfortunately FAC FAC returns a function which does not make sense: in its body, a call to FAC is
made with an argument pred n, but FAC expects not a natural number but a function. It is, however,
easy to fix the problem: if FAC FAC returns a correct implementation of the factorial function, we only
need to replace FAC in the body by FAC FAC. That is, what we want in the end is the following equation

FAC FAC = λn. if eq n 0̂ then 1̂ else mult n (FAC FAC (pred n))

where FAC FAC serves as a correct implementation of the factorial function.
Let us change the definition of FAC so that it satisfies the above equation. All we need to do is to

replace a reference to f in its body by an application f f . Thus we obtain a new function Fac defined as
follows:

Fac = λf. λn. if eq n 0̂ then 1̂ else mult n (f f (pred n))

It is easy to see that Fac satisfies the following equation:

Fac Fac = λn. if eq n 0̂ then 1̂ else mult n (Fac Fac (pred n))

Since Fac Fac returns a correct implementation of the factorial function, we define fac as follows:

fac = Fac Fac

Now let us derive the fixed point combinator fix by rewriting fac in terms of fix (and FAC as it turns
out). Consider the body of Fac:

Fac = λf. λn. if eq n 0̂ then 1̂ else mult n (f f (pred n))

The underlined expression is almost the body of a typical factorial function except for the application
f f . The following definition of Fac abstracts from the application f f by replacing it by a reference to
a single function g:

Fac = λf. (λg. λn. if eq n 0̂ then 1̂ else mult n (g (pred n))) (f f)

= λf.FAC (f f)

Then fac is rewritten as follows:

fac = Fac Fac

= (λf.FAC (f f)) (λf.FAC (f f))
= λF. ((λf. F (f f)) (λf. F (f f))) FAC

= fixCBN FAC
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In the case of the call-by-value strategy, fixCBN FAC always diverges. A quick fix is to rewrite f f as
λx. f f x and we obtain fix:

fac = Fac Fac

= λF. ((λf. F (f f)) (λf. F (f f))) FAC

= λF. ((λf. F (λx. f f x)) (λf. F (λx. f f x))) FAC

= fix FAC

This is how to derive the fixed point combinator fix!

3.7 De Bruijn indexes
As λ-abstractions are intended to denote mathematical functions with formal arguments, variable names
may seem to be an integral part of the syntax for the λ-calculus. For example, it seems inevitable to in-
troduce a formal argument, say x, when defining an identity function. On the other hand, a specific
choice of a variable name does not affect the meaning of a λ-abstraction. For example, λx. x and λy. y
both denote the same identity function even though they bind different variable names as formal argu-
ments. In general, α-conversion enables us to rewrite any λ-abstraction into another λ-abstraction with
a different name for the bound variable. This observation suggests that there may be a way to represent
variables in the λ-calculus without specific names. An example of such a nameless representation of
variables is de Bruijn indexes.

The basic idea behind de Bruijn indexes is to represent each variable by an integer value, called a
de Bruijn index, instead of a name. (De Bruijn indexes can be negative, but we consider non-negative
indexes only.) Roughly speaking, a de Bruijn index counts the number of λ-binders, such as λx, λy, and
λz, lying between a given variable and its corresponding (unique) λ-binder. For example, x in the body
of λx. x is assigned a de Bruijn index 0 because there is no intervening λ-binder between x and λx. In
contrast, x in the body of λx. λy. x y is assigned a de Bruin index 1 because there lies an intervening
λ-binder λy between x and λx. Thus a de Bruijn index for a variable specifies the relative position of its
corresponding λ-binder. This, in turn, implies that the same variable can be assigned different de Bruijn
indexes depending on its position. For example, in λx. x (λy. x y), the first occurrence of x is assigned 0
whereas the second occurrence is assigned 1 because of the λ-binder λy.

Since all variables are now represented by integer values, there is no need to explicitly introduce
variables in λ-abstractions. In fact, it is impossible because the same variable can be assigned different
de Bruijn indexes. Thus, expressions with de Bruijn indexes, or de Bruijn expressions, are inductively
defined as follows:

de Bruijn expression M ::= n | λ.M |M M
de Bruijn index n ::= 0 | 1 | 2 | · · ·

For de Bruijn expressions, we use metavariables M and N ; for de Bruijn indexes, we use metavariables
n, m, and i.

We write e ≡dB M to mean that an ordinary expression e is converted to a de Bruijn expression M .
Sometimes it suffices to literally count the number of λ-binders lying between each variable and its
corresponding λ-binder, as in all the examples given above:

λx. x ≡dB λ. 0
λx. λy. x y ≡dB λ. λ. 1 0

λx. x (λy. x y) ≡dB λ. 0 (λ. 1 0)

In general, however, converting an ordinary expression e into a de Bruijn expression requires us to
interpret e as a tree-like structure rather than a linear structure. As an example, consider λx. (x (λy. x y)) (λz. x z).
Literally counting the number of λ-binders results in a de Bruijn expression λ. (0 (λ. 1 0)) (λ. 2 0), in
which the last occurrence of x is assigned a (wrong) de Bruijn index 2 because of λy and λz. In-
tuitively, however, the last occurrence of x must be assigned a de Bruijn index 1 because its corre-
sponding λ-binder can be located irrespective of the λ-binder λy. Thus, a proper way to convert an
expression e to a de Bruijn expression is to count the number of λ-binders found along the way from
each variable to its corresponding λ-binder in the tree-like representation of e. For example, we have
λx. (x (λy. x y)) (λz. x z) ≡dB λ. (0 (λ. 1 0)) (λ. 1 0) as illustrated below:
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3.7.1 Substitution
In order to exploit de Bruijn indexes in implementing the operational semantics of the λ-calculus, we
need a definition of substitution for de Bruijn expressions, from which a definition of β-reduction can
be derived. We wish to define σ0(M,N) such that the following relationship holds:

(λx. e) e′ 7→ [e′/x]e
≡dB ≡dB

(λ.M) N 7→ σ0(M,N)

That is, applying λ.M to N , or substituting N for the variable bound in λ.M , results in σ0(M,N). (The
meaning of the subscript 0 in σ0(M,N) is explained later.)

Instead of beginning with a complete definition of σ0(M,N), let us refine it through a series of
examples. Consider the following example in which the redex is underlined:

λx. λy. (λz. x y z) (λw.w) 7→ λx. λy. x y (λw.w)

≡dB ≡dB

λ. λ. (λ. 2 1 0) (λ. 0) 7→ λ. λ. 1 0 (λ. 0)

We observe that 0, which corresponds to z bound in the λ-abstraction λz. x y z, is replaced by the argu-
ment λ. 0. The other indexes 1 and 2 are decremented by one because the λ-binder λz disappears. These
two observations lead to the following partial definition of σ0(M,N):

σ0(M1 M2, N) = σ0(M1, N) σ0(M2, N)
σ0(0, N) = N
σ0(m,N) = m− 1 if m > 0

To see how the remaining case σ0(λ.M,N) is defined, consider another example in which the redex
is underlined:

λx. λy. (λz. (λu. x y z u)) (λw.w) 7→ λx. λy. (λu. x y (λw.w) u)

≡dB ≡dB

λ. λ. (λ. (λ. 3 2 1 0)) (λ. 0) 7→ λ. λ. (λ. 2 1 (λ. 0) 0)

We observe that unlike in the first example, 0 remains intact because it corresponds to u bound in
λu. x y z u, while 1 corresponds to z and is thus replaced by λ. 0. The reason why 1 is now replaced
by λ. 0 is that in general, a de Bruijn index m outside λ.M points to the same variable as m + 1 inside
λ.M , i.e., within M . This observation leads to an equation σ0(λ.M,N) = λ. σ1(M,N) where σ1(M,N)
is defined as follows:

σ1(M1 M2, N) = σ1(M1, N) σ1(M2, N)
σ1(0, N) = 0
σ1(1, N) = N
σ1(m,N) = m− 1 if m > 1

In the two examples above, we see that the subscript n in σn(M,N) serves as a “boundary” index:
m remains intact if m < n, m is replaced by N if m = n, and m is decremented by one if m > n.

September 30, 2011 49



Alternatively n in σn(M,N) may be read as the number of λ-binders enclosing M as illustrated below:

σ0(λ. λ. · · ·λ.︸ ︷︷ ︸
n

M,N) = λ. λ. · · ·λ.︸ ︷︷ ︸
n

σn(M,N)

The following definition of σn(M,N) uses n as a boundary index and also generalizes the relationship
between σ0(λ.M,N) and λ. σ1(M,N):

σn(M1 M2, N) = σn(M1, N) σn(M2, N)
σn(λ.M,N) = λ. σn+1(M,N)
σn(m,N) = m if m < n
σn(n,N) = N
σn(m,N) = m− 1 if m > n

The following example combines the two examples given above:

λx. λy. (λz. (λu. x y z u) (x y z)) (λw.w) 7→ λx. λy. (λu. x y (λw.w) u) (x y (λw.w))

≡dB ≡dB

λ. λ. (λ. (λ. 3 2 1 0) (2 1 0)) (λ. 0) 7→ λ. λ. (λ. 2 1 (λ. 0) 0) (1 0 (λ. 0))

The use of de Bruijn indexes obviates the need for α-conversion because variable names never clash.
Put simply, there is no need to rename bound variables to avoid variable captures because variables
have no names anyway.

3.7.2 Shifting
Although the previous definition of σn(M,N) is guaranteed to work if N is closed, it may not work if
N represents an expression with free variables. To be specific, the equation σn(n,N) = N ceases to hold
if n > 0 and N represents an expression with free variables. Consider the following example in which
the redex is underlined:

λx. λy. (λz. (λu. z) z) (λw. x y w) 7→ λx. λy. (λu. λw. x y w) (λw. x y w)

≡dB ≡dB

λ. λ. (λ. (λ. 1) 0) (λ. 2 1 0) 7→ λ. λ. (λ. λ. 3 2 0) (λ. 2 1 0)

The previous definition of σn(M,N) yields a wrong result because σ1(1, λ. 2 1 0) yields λ. 2 1 0 instead
of λ. 3 2 0:

(λ. (λ. 1) 0) (λ. 2 1 0) 7→ σ0((λ. 1) 0, λ. 2 1 0)

= σ0(λ. 1, λ. 2 1 0) σ0(0, λ. 2 1 0)
= (λ. σ1(1, λ. 2 1 0)) σ0(0, λ. 2 1 0)
= (λ. λ. 2 1 0) (λ. 2 1 0)
6= (λ. λ. 3 2 0) (λ. 2 1 0)

To see why σn(n,N) = N fails to hold in general, recall that the subscript n in σn(n,N) denotes the
number of λ-binders enclosing the de Bruijn index n:

σ0(λ. λ. · · ·λ.︸ ︷︷ ︸
n

n,N) = λ. λ. · · ·λ.︸ ︷︷ ︸
n

σn(n,N)

Therefore all de Bruijn indexes in N corresponding to free variables must be shifted by n after the
substitution so that they correctly skip those n λ-binders enclosing the de Bruijn index n. For example,
we have:

σ0(λ. λ. · · ·λ.︸ ︷︷ ︸
n

n,m) = λ. λ. · · ·λ.︸ ︷︷ ︸
n

σn(n,m) = λ. λ. · · ·λ.︸ ︷︷ ︸
n

m+ n

(Here m + n is a single de Bruijn index adding m and n, not a composite de Bruijn index expression
consisting of m, n, and +.)

Let us write τn(N) for shifting by n all de Bruijn indexes in N corresponding to free variables. Now
we use σn(n,N) = τn(N) instead of σn(n,N) = N . A partial definition of τn(N) is given as follows:

τn(N1 N2) = τn(N1) τ
n(N2)

τn(m) = m+ n
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The remaining case τn(λ.N ), however, cannot be defined inductively in terms of τn(N), for example,
like τn(λ.N ) = λ. τn(N). The reason is that within N , not every de Bruijn index corresponds to a free
variable: 0 finds its corresponding λ-binder in λ.N and thus must remain intact.

This observation suggests that we need to maintain another “boundary” index (similar to the bound-
ary index n in σn(M,N)) in order to decide whether a given de Bruijn index corresponds to a free vari-
able or not. For example, if the boundary index for λ.N starts at 0, it increments to 1 within N . Thus
we are led to use a general form τn

i (N) for shifting by n all de Bruijn indexes in N corresponding to free
variables where a de Bruijn index m in N such that m < i does not count as a free variable. Formally
τn
i (N) is defined as follows:

τn
i (N1 N2) = τn

i (N1) τ
n
i (N2)

τn
i (λ.N) = λ. τn

i+1(N)
τn
i (m) = m+ n if m ≥ i
τn
i (m) = m if m < i

Accordingly the complete definition of σn(M,N) is given as follows:

σn(M1 M2, N) = σn(M1, N) σn(M2, N)
σn(λ.M,N) = λ. σn+1(M,N)
σn(m,N) = m if m < n
σn(n,N) = τn

0 (N)
σn(m,N) = m− 1 if m > n

Now (λ. (λ. 1) 0) (λ. 2 1 0) from the earlier example reduces correctly:

(λ. (λ. 1) 0) (λ. 2 1 0) 7→ σ0((λ. 1) 0, λ. 2 1 0)

= σ0(λ. 1, λ. 2 1 0) σ0(0, λ. 2 1 0)
= (λ. σ1(1, λ. 2 1 0)) σ0(0, λ. 2 1 0)
= (λ. τ1

0 (λ. 2 1 0)) τ0
0 (λ. 2 1 0)

= (λ. λ. τ1
1 (2 1 0)) λ. τ0

1 (2 1 0)
= (λ. λ. (2 + 1) (1 + 1) 0) (λ. (2 + 0) (1 + 0) 0)
= (λ. λ. 3 2 0) (λ. 2 1 0)

When converting an ordinary expression e with free variables x0, x1, · · · , xn into a de Bruijn expres-
sion, we may convert λx0. λx1. · · ·λxn. e instead, which effectively assigns de Bruijn indexes 0, 1, · · · , n
to x0, x1, · · · , xn, respectively. Then we can think of reducing e as reducing λx0. λx1. · · ·λxn. e where
the n λ-binders are all ignored. In this way, we can exploit de Bruijn indexes in reducing expressions
with free variables (or global variables).

3.8 Exercises

Exercise 3.10. We wish to develop a weird reduction strategy for the λ-calculus:

• Given an application e1 e2, we first reduce e2.

• After reducing e2 to a value, we reduce e1.

• When e1 reduces to a λ-abstraction, we apply the β-reduction.

Give the rules for the reduction judgment e 7→ e′ under the weird reduction strategy.
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Exercise 3.11. In a reduction sequence judgment e 7→∗ e′, we use 7→∗ for the reflexive and transitive
closure of 7→ . That is, e 7→∗ e′ holds if e 7→ e1 7→ · · · 7→ en = e′ where n ≥ 0. Formally we use the
following inductive definition:

e 7→∗ e
Refl

e 7→ e′′ e′′ 7→∗ e′

e 7→∗ e′
Trans

We would expect that e 7→∗ e′ and e′ 7→∗ e′′ together imply e 7→∗ e′′ because we obtain a proof of
e 7→∗ e′′ simply by concatenating e 7→ e1 7→ · · · 7→ en = e′ and e′ 7→ e′1 7→ · · · 7→ e′m = e′′:

e 7→ e1 7→ · · · 7→ en = e′ 7→ e′1 7→ · · · 7→ e′m = e′′

Give a proof of this transitivity property of 7→∗ : if e 7→∗ e′ and e′ 7→∗ e′′, then e 7→∗ e′′. To which
judgment of e 7→∗ e′ and e′ 7→∗ e′′ do we have to apply rule induction?

Exercise 3.12. Define a function double = λn̂. · · · for doubling a given natural number encoded as a
Church numeral. Specifically double n̂ returns 2̂ ∗ n.

Exercise 3.13. Define an operation halve for halving a given natural number. Specifically halve n̂ returns
n̂/2:

• halve 2̂ ∗ k returns k̂.

• halve ̂(2 ∗ k + 1) returns k̂.

You may use pair, fst, and snd without expanding them into their definitions. You may also use zero for
a natural number zero and succ for finding the successor to a given natural number:

zero = 0̂ = λf. λx. x
succ = λn̂. λf. λx. n̂ f (f x)
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Chapter 4

Simply typed λ-calculus

This chapter presents the simply typed λ-calculus, an extension of the λ-calculus with types. Since the
λ-calculus in the previous chapter does not use types, we refer to it as the untyped λ-calculus so that we
can differentiate it from the simply typed λ-calculus.

Unlike the untyped λ-calculus in which base types (such as boolean and integers) are simulated with
λ-abstractions, the simply typed λ-calculus assumes a fixed set of base types with primitive constructs.
For example, we may choose to include a base type bool with boolean constants true and false and a
conditional construct if e then e1 else e2. Thus the simply typed λ-calculus may be thought of as not
just a core calculus for investigating the expressive power but indeed a subset of a functional language.
Then any expression in the simply typed λ-calculus can be literally translated in a functional language
such as SML.

As with the untyped λ-calculus, we first formulate the abstract syntax and operational semantics
of the simply typed λ-calculus. The difference in the operational semantics is nominal because types
play no role in reducing expressions. A major change arises from the introduction of a type system, a
collection of judgments and inference rules for assigning types to expressions. The type assigned to an
expression determines the form of the value to which it evaluates. For example, an expression of type
bool may evaluate to either true or false, but nothing else.

The focus of the present chapter is on type safety, the most basic property of a type system that an
expression with a valid type, or a well-typed expression, cannot go wrong at runtime. Since an expression
is assigned a type at compile time and type safety ensures that a well-typed expression is well-behaved
at runtime, we do not need the trial and error method (of running a program to locate the source of bugs
in it) in order to detect fatal bugs such as adding memory addresses, subtracting an integer from a string,
using an integer as a destination address in a function invocation, and so forth. Since it is often these
simple (and stupid) bugs that cause considerable delay in software development, type safety offers a
huge advantage over those programming languages without type systems or with type systems that
fail to support type safety. Type safety is also the reason behind the phenomenon that programs that
successfully compile run correctly in many cases.

Every extension to the simply typed λ-calculus discussed in this course will preserve type safety.
We definitely do not want to squander our time developing a programming language as uncivilized as
C!

4.1 Abstract syntax

The abstract syntax for the simply typed λ-calculus is given as follows:

type A ::= P | A→A
base type P ::= bool

expression e ::= x | λx :A. e | e e |
true | false | if e then e else e

value v ::= λx :A. e | true | false
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A type is either a base type P or a function type A→A′. A base type is a type whose primitive con-
structs are given as part of the definition. Here we use a boolean type bool as a base type with which
three primitive constructs are associated: boolean constants true and false and a conditional construct
if e then e1 else e2. A function type A→A′ describes those functions taking an argument of type A and
returning a result of type A′. We use metavariables A, B, C for types.

It is important that the simply typed λ-calculus does not stipulate specific base types. In other
words, the simply typed λ-calculus is just a framework for functional languages whose type system is
extensible with additional base types. For example, the definition above considers bool as the only base
type, but it should also be clear how to extend the definition with another base type (e.g., an integer type
int with integer constants and arithmetic operators). On the other hand, the simply typed λ-calculus
must have at least one base type. Otherwise the set P of base types is empty, which in turn makes the
set A of types empty. Then we would never be able to create an expression with a valid type!

As in the untyped λ-calculus, expressions include variables, λ-abstractions or functions, and appli-
cations. A λ-abstraction λx :A. e now explicitly specifies the type A of its formal argument x. If λx :A. e
is applied to an expression of a different type A′ (i.e., A 6= A′), the application does not typecheck
and thus has no type, as will be seen in Section 4.3. We say that variable x is bound to type A in a
λ-abstraction λx :A. e, or that a λ-abstraction λx :A. e binds variable x to type A.

4.2 Operational semantics

The development of the operational semantics of the simply typed λ-calculus is analogous to the case
for the untyped λ-calculus: we define a mapping FV(e) to calculate the set of free variables in e, a
capture-avoiding substitution [e′/x]e, and a reduction judgment e 7→ e′ with reduction rules. Since the
simply typed λ-calculus is no different from the untyped λ-calculus except for its use of a type system,
its operational semantics reverts to the operational semantics of the untyped λ-calculus if we ignore
types in expressions.

A mapping FV(e) is defined as follows:

FV(x) = {x}
FV(λx :A. e) = FV(e) − {x}

FV(e1 e2) = FV(e1) ∪ FV(e2)
FV(true) = ∅

FV(false) = ∅

FV(if e then e1 else e2) = FV(e) ∪ FV(e1) ∪ FV(e2)

As in the untyped λ-calculus, we say that an expression is closed if it contains no free variables.
A capture-avoiding substitution [e′/x]e is defined as follows:

[e′/x]x = e′

[e′/x]y = y if x 6= y
[e′/x]λx :A. e = λx :A. e
[e′/x]λy :A. e = λy :A. [e′/x]e if x 6= y, y 6∈ FV(e′)
[e′/x](e1 e2) = [e′/x]e1 [e′/x]e2

[e′/x]true = true

[e′/x]false = false

[e′/x]if e then e1 else e2 = if [e′/x]e then [e′/x]e1 else [e′/x]e2

When a variable capture occurs in [e′/x]λy :A. e, we rename the bound variable y using theα-equivalence
relation ≡α . We omit the definition of ≡α because it requires no further consideration than the defini-
tion given in Chapter 3.
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As with the untyped λ-calculus, different reduction strategies yield different reduction rules for the
reduction judgment e 7→ e′. We choose the call-by-value strategy which lends itself well to extend-
ing the simply typed λ-calculus with computational effects such as mutable references, exceptions, and
continuations (to be discussed in subsequent chapters). Thus we use the following reduction rules:

e1 7→ e′1
e1 e2 7→ e′1 e2

Lam
e2 7→ e′2

(λx :A. e) e2 7→ (λx :A. e) e′2
Arg

(λx :A. e) v 7→ [v/x]e
App

e 7→ e′

if e then e1 else e2 7→ if e′ then e1 else e2
If

if true then e1 else e2 7→ e1
If true if false then e1 else e2 7→ e2

If false

The rules Lam, Arg , and App are exactly the same as in the untyped λ-calculus except that we use a λ-
abstraction of the form λx :A. e. (To implement the call-by-name strategy, we remove the rule Arg and
rewrite the rule App as (λx :A. e) e′ 7→ [e′/x]e

App .) The three rules If , If true, and If false combined
together specify how to reduce a conditional construct if e then e1 else e2:

• We reduce e to either true or false.

• If e reduces to true, we choose the then branch and begin to reduce e1.

• If e reduces to false, we choose the else branch and begin to reduce e2.

As before, we write 7→∗ for the reflexive and transitive closure of 7→ . We say that e evaluates to v if
e 7→∗ v holds.

4.3 Type system
The goal of this section is to develop a system of inference rules for assigning types to expressions in
the simply typed λ-calculus. We use a judgment called a typing judgment, and refer to inference rules
deducing a typing judgment as typing rules. The resultant system is called the type system of the simply
typed λ-calculus.

To figure out the right form for the typing judgment, let us consider an identity function id =
λx :A. x. Intuitively id has a function type A→A because it takes an argument of type A and returns a
result of the same type. Then how do we determine, or “infer,” the type of id? Since id is a λ-abstraction
with an argument of type A, all we need is the type of its body. It is easy to see, however, that its body
cannot be considered in isolation: without any assumption on the type of its argument x, we cannot
infer the type of its body x.

The example of id suggests that it is inevitable to use assumptions on types of variables in typing
judgments. Thus we are led to introduce a typing context to denote an unordered set of assumptions on
types of variables; we use a type binding x : A to mean that variable x assumes type A:

typing context Γ ::= · | Γ, x : A

• · denotes an empty typing context and is our notation for an empty set ∅.

• Γ, x : A augments Γ with a type binding x : A and is our notation for Γ ∪ {x : A}. We abbreviate
·, x : A as x : A to denote a singleton typing context {x : A}.

• We use the notation for typing contexts in a flexible way. For example, Γ, x : A,Γ′ denotes Γ ∪ {x : A} ∪ Γ′,
and Γ,Γ′ denotes Γ ∪ Γ′.

For the sake of simplicity, we assume that variables in a typing context are all distinct. That is, Γ, x : A
is not defined if Γ contains another type binding of the form x : A′, or simply if x : A′ ∈ Γ.

The type system uses the following form of typing judgment:
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Γ ` e : A ⇔ expression e has type A under typing context Γ

Γ ` e : A means that if we use each type binding x : A in Γ as an assumption, we can show that expres-
sion e has type A. An easy way to understand the role of Γ is by thinking of it as a set of type bindings
for free variables in e, although Γ may also contain type bindings for those variables not found in e.
For example, a closed expression e of type A needs a typing judgment · ` e : A with an empty typing
context (because it contains no free variables), whereas an expression e′ with a free variable x needs a
typing judgment Γ ` e′ : A′ where Γ contains at least a type binding x : B for some type B.1

With the above interpretation of typing judgments, we can now explain the typing rules for the
simply typed λ-calculus:

x : A ∈ Γ
Γ ` x : A

Var
Γ, x : A ` e : B

Γ ` λx :A. e : A→B
→I

Γ ` e : A→B Γ ` e′ : A
Γ ` e e′ : B

→E

Γ ` true : bool
True

Γ ` false : bool
False

Γ ` e : bool Γ ` e1 : A Γ ` e2 : A

Γ ` if e then e1 else e2 : A
If

• The rule Var means that a type binding in a typing context is an assumption. Alternatively we
may rewrite the rule as follows:

Γ, x : A,Γ′ ` x : A
Var

• The rule→I says that if e has typeB under the assumption that x has typeA, then λx :A. e has type
A→B. If we read the rule→I from the premise to the conclusion (i.e., top-down), we “introduce” a
function type A→B from the judgment in the premise, which is the reason why it is called the “→
Introduction rule.” Note that if Γ already contains a type binding for variable x (i.e., x : A′ ∈ Γ),
we rename x to a fresh variable by α-conversion. Hence we may assume without loss of generality
that variable clashes never occur in the rule →I.

• The rule →E says that if e has type A→B and e′ has type A, then e e′ has type B. If we read the
rule →E from the premise to the conclusion, we “eliminate” a function type A→B to produce an
expression of a smaller type B, which is the reason why it is called the “→ Elimination rule.”

• The rules True and False assign base type bool to boolean constants true and false. Note that typing
context Γ is not used because there is no free variable in true and false.

• The rule If says that if e has type bool and both e1 and e2 have the same typeA, then if e then e1 else e2
has type A.

A derivation tree for a typing judgment is called a typing derivation. Here are a few examples of valid
typing derivations. The first example infers the type of an identify function (where we use no premise
in the rule Var):

Γ, x : A ` x : A
Var

Γ ` λx :A. x : A→A
→I

Since λx :A. x is closed, we may use an empty typing context · for Γ:

x : A ` x : A
Var

· ` λx :A. x : A→A
→I

1A typing judgment Γ ` e : A is an example of a hypothetical judgment which deduces a “judgment” e : A using each “judg-
ment” xi : Ai in Γ as a hypothesis. From this point of view, the turnstile symbol ` is just a syntactic device which plays no
semantic role at all. Although the notion of hypothetical judgment is of great significance in the study of logic, I do not find it
particularly useful in helping students to understand the type system of the simply typed λ-calculus.
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In the second example below, we abbreviate Γ, x : bool, y1 : A, y2 : A as Γ′. Note also that bool→A→A→A
is equivalent to bool→(A→(A→A)) because→ is right-associative:

x : bool ∈ Γ′

Γ′ ` x : bool
Var

y1 : A ∈ Γ′

Γ′ ` y1 : A
Var

y2 : A ∈ Γ′

Γ′ ` y2 : A
Var

Γ, x : bool, y1 : A, y2 : A ` if x then y1 else y2 : A
If

Γ, x : bool, y1 : A ` λy2 :A. if x then y1 else y2 : A→A
→I

Γ, x : bool ` λy1 :A. λy2 :A. if x then y1 else y2 : A→A→A
→I

Γ ` λx :bool. λy1 :A. λy2 :A. if x then y1 else y2 : bool→A→A→A
→I

The third example infers the type of a function composing two functions f and g where we abbreviate
Γ, f : A→B, g : B→C, x : A as Γ′:

g : B→C ∈ Γ′

Γ′ ` g : B→C
Var

f : A→B ∈ Γ′

Γ′ ` f : A→B
Var

x : A ∈ Γ′

Γ′ ` x : A
Var

Γ′ ` f x : B
→E

Γ, f : A→B, g : B→C, x : A ` g (f x) : C
→E

Γ, f : A→B, g : B→C ` λx :A. g (f x) : A→C
→I

Γ, f : A→B ` λg :B→C. λx :A. g (f x) : (B→C)→(A→C)
→I

Γ ` λf :A→B. λg :B→C. λx :A. g (f x) : (A→B)→(B→C)→(A→C)
→I

We close this section by proving two properties of typing judgments: permutation and weakening. The
permutation property reflects the assumption that a typing context Γ is an unordered set, which means
that two typing contexts are identified up to permutation. For example, Γ, x : A, y : B is identified with
Γ, y : B, x : A, with x : A,Γ, y : B, with x : A, y : B,Γ, and so on. The weakening property says that if
we can prove that expression e has type A under typing context Γ, we can also prove it under another
typing context Γ′ augmenting Γ with a new type binding x : A (because we can just ignore the new type
binding). These properties are called structural properties of typing judgments because they deal with
the structure of typing judgments rather than their derivations.2

Proposition 4.1 (Permutation). If Γ ` e : A and Γ′ is a permutation of Γ, then Γ′ ` e : A.

Proof. By rule induction on the judgment Γ ` e : A.

Proposition 4.2 (Weakening). If Γ ` e : C , then Γ, x : A ` e : C .

Proof. By rule induction on the judgment Γ ` e : C. We show three cases. The remaining cases are simi-
lar to the case for the rule →E.

Case
y : C ∈ Γ

Γ ` y : C
Var where e = y:

y : C ∈ Γ, x : A from y : C ∈ Γ
Γ, x : A ` y : C by the rule Var

Case
Γ, y : C1 ` e′ : C2

Γ ` λy :C1. e
′ : C1→C2

→I where e = λy :C1. e
′ and C = C1→C2:

This is the case where Γ ` e : C is proven by applying the rule →I. In other words, the last inference
rule applied in the proof of Γ ` e : C is the rule →I. Then e must have the form λy :C1. e

′ for some type
C = C1→C2; otherwise the rule →I cannot be applied. Then the premise is uniquely determined as
Γ, y : C1 ` e′ : C2.
Γ, y : C1, x : A ` e′ : C2 by induction hypothesis
Γ, x : A, y : C1 ` e′ : C2 by Proposition 4.1
Γ, x : A ` λy :C1. e

′ : C1→C2 by the rule →I

2 There is no strict rule on whether a property should be called a theorem or a proposition, although a general rule of thumb is
that a property relatively easy to prove is called a proposition. A property that is of great significance is usually called a theorem.
(For example, it is Fermat’s last theorem rather than Fermat’s last proposition.) A lemma is a property proven for facilitating
proofs of other theorems, propositions, or lemmas.
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Case
Γ ` e1 : B→C Γ ` e2 : B

Γ ` e1 e2 : C
→E where e = e1 e2:

This is the case where Γ ` e : C is proven by applying the rule→E. Then e must have the form e1 e2 and
the two premises are uniquely determined for some type B; otherwise the rule →E cannot be applied.
Γ, x : A ` e1 : B→C by induction hypothesis on Γ ` e1 : B→C
Γ, x : A ` e2 : B by induction hypothesis on Γ ` e2 : B
Γ, x : A ` e1 e2 : C by the rule →E

As typing contexts are always assumed to be unordered sets, we implicitly use the permutation
property in proofs. For example, we may deduce Γ, x : A ` λy :C1. e

′ : C1→C2 directly from Γ, y : C1, x : A ` e′ : C2

without an intermediate step of permutating Γ, y : C1, x : A into Γ, x : A, y : C1.

4.4 Type safety

In order to determine properties of expressions, we have developed two systems for the simply typed
λ-calculus: operational semantics and type system. The operational semantics enables us to find out
dynamic properties, namely values, associated with expressions. Values are dynamic properties in the
sense that they can be determined only at runtime in general. For this reason, an operational semantics
is also called a dynamic semantics. In contrast, the type system enables us to find out static properties,
namely types, of expressions. Types are static properties in the sense that they are determined at com-
pile time and remain “static” at runtime. For this reason, a type system is also called a static semantics.

We have developed the type system independently of the operational semantics. Therefore there
remains a possibility that it does not respect the operational semantics, whether intentionally or unin-
tentionally. For example, it may assign different types to two expressions e and e′ such that e 7→ e′,
which is unnatural because we do not anticipate a change in type when an expression reduces to an-
other expression. Or it may assign a valid type to a nonsensical expression, which is also unnatural
because we expect every expression of a valid type to be a valid program. Type safety, the most basic
property of a type system, connects the type system with the operational semantics by ensuring that it
lives in harmony with the operational semantics. It is often rephrased as “well-typed expressions cannot
go wrong.”

Type safety consists of two theorems: progress and type preservation. The progress theorem states that
a (closed) well-typed expression is not stuck: either it is a value or it reduces to another expression:

Theorem 4.3 (Progress). If · ` e : A for some typeA, then either e is a value or there exists e′ such that e 7→ e′.

The type preservation theorem states that when a well-typed expression reduces, the resultant expres-
sion is also well-typed and has the same type; type preservation is also called subject reduction:

Theorem 4.4 (Type preservation). If Γ ` e : A and e 7→ e′, then Γ ` e′ : A.

Note that the progress theorem assumes an empty typing context (hence a closed well-typed expres-
sion e) whereas the type preservation theorem does not. It actually makes sense if we consider whether
a reduction judgment e 7→ e′ is part of the conclusion or is given as an assumption. In the case of the
progress theorem, we are interested in whether e reduces to another expression or not, provided that it
is well-typed. Therefore we use an empty typing context to disallow free variables in ewhich may make
its reduction impossible. If we allowed any typing context Γ, the progress theorem would be downright
false, as evidenced by a simple counterexample e = x which is not a value and is irreducible. In the
case of the type preservation theorem, we begin with an assumption e 7→ e′. Then there is no reason not
to allow free variables in e because we already know that it reduces to another expression e′. Thus we
use a metavariable Γ (ranging over all typing contexts) instead of an empty typing context.

Combined together, the two theorems guarantee that a (closed) well-typed expression never reduces
to a stuck expression: either it is a value or it reduces to another well-typed expressions. Consider a
well-typed expression e such that · ` e : A for some type A. If e is already a value, there is no need to
reduce it (and hence it is not stuck). If not, the progress theorem ensures that there exists an expression
e′ such that e 7→ e′, which is also a well-typed expression of the same type A by the type preservation
theorem.
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Below we prove the two theorems using rule induction. It turns out that a direct proof attempt
by rule induction fails, and thus we need a couple of lemmas. These lemmas (canonical forms and
substitution) are so prevalent in programming language theory that their names are worth memorizing.

4.4.1 Proof of progress
The proof of Theorem 4.3 is relatively straightforward: the theorem is written in the form “If J holds, then
P (J) holds,” and we apply rule induction to the judgment J , which is a typing judgment · ` e : A. So we
begin with an assumption · ` e : A. If e happens to be a value, the P (J) part holds trivially because the
judgment “e is a value” holds. Thus we make a stronger assumption · ` e : A with e not being a value.
Then we analyze the structure of the proof of · ` e : A, which gives three cases to consider:

x : A ∈ ·
· ` x : A

Var
· ` e1 : A→B · ` e2 : A

· ` e1 e2 : B
→E

· ` eb : bool · ` e1 : A · ` e2 : A

· ` if eb then e1 else e2 : A
If

The case Var is impossible because x : A cannot be a member of an empty typing context ·. That is,
the premise x : A ∈ · is never satisfied. So we are left with the two cases →E and If. Let us analyze
the case →E in depth. By the principle of rule induction, the induction hypothesis on the first premise
· ` e1 : A→B opens two possibilities:

1. e1 is a value.

2. e1 is not a value and reduces to another expression e′1, i.e., e1 7→ e′1.

If the second possibility is the case, we have found an expression to which e1 e2 reduces, namely e′1 e2:

e1 7→ e′1
e1 e2 7→ e′1 e2

Lam

Now what if the first possibility is the case? Since e1 has type A→B, it is likely to be a λ-abstraction,
in which case the induction hypothesis on the second premise · ` e2 : A opens another two possibilities
and we use either the rule Arg or the rule App to show the progress property. Unfortunately we do not
have a formal proof that e1 is indeed a λ-abstraction; we know only that e1 has type A→B under an
empty typing context. Our instinct, however, says that e1 must be a λ-abstraction because it has type
A→B. The following lemma formalizes our instinct on the correct, or “canonical,” form of a well-typed
value:

Lemma 4.5 (Canonical forms).
If v is a value of type bool, then v is either true or false.
If v is a value of type A→B, then v is a λ-abstraction λx :A. e.

Proof. By case analysis of v. (Not every proof uses rule induction!)
Suppose that v is a value of type bool. The only typing rules that assign a boolean type to a given

value are True and False. Therefore v is a boolean constant true or false. Note that the rules Var, →E, and
If may assign a boolean type, but never to a value.

Suppose that v is a value of type A→B. The only typing rule that assigns a function type to a given
value is →I. Therefore v must be a λ-abstraction of the form λx :A. e (which binds variable x to type A).
Note that the rules Var, →E, and If may assign a function type, but not to a value.

Now we are ready to prove the progress theorem:

Proof of Theorem 4.3. By rule induction on the judgment · ` e : A.
If e is already a value, we need no further consideration. Therefore we assume that e is not a value.

Then there are three cases to consider.

Case
x : A ∈ ·
· ` x : A

Var where e = x:

impossible from x : A 6∈ ·

Case
· ` e1 : B→A · ` e2 : B

· ` e1 e2 : A
→E where e = e1 e2:
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e1 is a value or there exists e′1 such that e1 7→ e′1 by induction hypothesis on · ` e1 : B→A
e2 is a value or there exists e′2 such that e2 7→ e′2 by induction hypothesis on · ` e2 : B

Subcase: e1 is a value and e2 is a value
e1 = λx :B. e′1 by Lemma 4.5
e2 = v2 because e2 is a value
e1 e2 7→ [v2/x]e

′
1 by the rule App

We let e′ = [v2/x]e
′
1.

Subcase: e1 is a value and there exists e′2 such that e2 7→ e′2
e1 = λx :B. e′1 by Lemma 4.5
e1 e2 7→ (λx :B. e′1) e

′
2 by the rule Arg

We let e′ = (λx :B. e′1) e
′
2.

Subcase: there exists e′1 such that e1 7→ e′1
e1 e2 7→ e′1 e2 by the rule Lam

We let e′ = e′1 e2.

Case
· ` eb : bool · ` e1 : A · ` e2 : A

· ` if eb then e1 else e2 : A
If where e = if eb then e1 else e2:

eb is either a value or there exists e′b such that eb 7→ e′b by induction hypothesis on · ` eb : bool

Subcase: eb is a value
eb is either true or false by Lemma 4.5
if eb then e1 else e2 7→ e1 or if eb then e1 else e2 7→ e2 by the rule If true or If false

We let e′ = e1 or e′ = e2.

Subcase: there exists e′b such that eb 7→ e′b
if eb then e1 else e2 7→ if e′b then e1 else e2 by the rule If

We let e′ = if e′b then e1 else e2.

4.4.2 Proof of type preservation

The proof of Theorem 4.4 is not as straightforward as the proof of Theorem 4.3 because the If part in
the theorem contains two judgments: Γ ` e : A and e 7→ e′. (We have seen a similar case in the proof
of Lemma 2.7.) Therefore we need to decide to which judgment of Γ ` e : A and e 7→ e′ we apply rule
induction. It turns out that the type preservation theorem is a special case in which we may apply rule
induction to either judgment!

Suppose that we choose to apply rule induction to e 7→ e′. Since there are six reduction rules, we
need to consider (at least) six cases. The question now is: which case do we do consider first?

As a general rule of thumb, if you are proving a property that is expected to hold, the most difficult
case should be the first to consider. The rationale is that eventually you have to consider the most
difficult case anyway, and by considering it at an early stage of the proof, you may find a flaw in the
system or identify auxiliary lemmas required for the proof. Even if you discover a flaw in the system
from the analysis of the most difficult case, you at least avoid considering easy cases more than once.
Conversely, if you are trying to locate flaws in the system by proving a property that is not expected to
hold, the easiest case should be the first to consider. The rationale is that the cheapest way to locate a
flaw is to consider the easiest case in which the flaw manifests itself (although it is not as convincing
as the previous rationale). The most difficult case may not even shed any light on hidden flaws in the
system, thereby wasting your efforts to analyze it.

Since we wish to prove the type preservation theorem rather than refute it, we consider the most
difficult case of e 7→ e′ first. Intuitively the most difficult case is when e 7→ e′ is proven by applying the
rule App, since the substitution in it may transform an application e into a completely different form of
expression, for example, a conditional construct. (The rules If true and If false are the easiest cases because
they have no premise and e′ is a subexpression of e.)

So let us consider the most difficult case in which (λx :A. e) v 7→ [v/x]e holds. Our goal is to use an
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assumption Γ ` (λx :A. e) v : C to prove Γ ` [v/x]e : C. The typing judgment Γ ` (λx :A. e) v : C must
have the following derivation tree:

Γ, x : A ` e : C

Γ ` λx :A. e : A→C
→I

Γ ` v : A
Γ ` (λx :A. e) v : C

→E

Therefore our new goal is to use two assumptions Γ, x : A ` e : C and Γ ` v : A to prove Γ ` [v/x]e : C.
The substitution lemma below generalizes the problem:

Lemma 4.6 (Substitution). If Γ ` e : A and Γ, x : A ` e′ : C, then Γ ` [e/x]e′ : C.

The substitution lemma is similar to the type preservation theorem in that the If part contains two
judgments. Unlike the type preservation theorem, however, we need to take great care in applying rule
induction because picking up a wrong judgment makes it impossible to complete the proof!

Exercise 4.7. To which judgment do you think we have to apply rule induction in the proof of Lemma 4.6?
Γ ` e : A or Γ, x : A ` e′ : C? Why?

The key observation is that [e/x]e′ analyzes the structure of e′, not e. That is, [e/x]e′ searches for
every occurrence of variable x in e′ only to replace it by e, and thus does not even need to know the
structure of e. Thus the right judgment for applying rule induction is Γ, x : A ` e′ : C .

Proof of Lemma 4.6. By rule induction on the judgment Γ, x : A ` e′ : C. Recall that variables in a typing
context are assumed to be all distinct. We show four cases. The first two deal with those cases where e′
is a variable. The remaining cases are similar to the case for the rule →E.

Case
y : C ∈ Γ, x : A

Γ, x : A ` y : C
Var where e′ = y and y : C ∈ Γ:

This is the case where e′ is a variable y that is different from x. Since y 6= x, the premise y : C ∈ Γ, x : A
implies the side condition y : C ∈ Γ.
Γ ` y : C from y : C ∈ Γ
[e/x]y = y from x 6= y
Γ ` [e/x]y : C

Case Γ, x : A ` x : A
Var where e′ = x and C = A:

This is the case where e′ is the variable x.
Γ ` e : A assumption
Γ ` [e/x]x : A [e/x]x = e

Case
Γ, x : A, y : C1 ` e′′ : C2

Γ, x : A ` λy :C1. e
′′ : C1→C2

→I where e′ = λy :C1. e
′′ and C = C1→C2:

Here we may assume without loss of generality that y is a fresh variable such that y 6∈ FV(e) and
y 6= x. If y ∈ FV(e) or y = x, we can always choose a different variable by applying an α-conversion to
λy :C1. e

′′.
Γ, y : C1 ` [e/x]e′′ : C2 by induction hypothesis
Γ ` λy :C1. [e/x]e

′′ : C1→C2 by the rule →I

[e/x]λy :C1. e
′′ = λy :C1. [e/x]e

′′ from y /∈ FV(e) and x 6= y
Γ ` [e/x]λy :C1. e

′′ : C1→C2

Case
Γ, x : A ` e1 : B→C Γ, x : A ` e2 : B

Γ, x : A ` e1 e2 : C
→E where e′ = e1 e2:

Γ ` [e/x]e1 : B→C by induction hypothesis on Γ, x : A ` e1 : B→C
Γ ` [e/x]e2 : B by induction hypothesis on Γ, x : A ` e2 : B
Γ ` [e/x]e1 [e/x]e2 : C by the rule →E

Γ ` [e/x](e1 e2) : C from [e/x](e1 e2) = [e/x]e1 [e/x]e2

At last, we are ready to prove the type preservation theorem. The proof proceeds by rule induction
on the judgment e 7→ e′. It exploits the fact that there is only one typing rule for each form of expression.
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For example, the only way to prove Γ ` e1 e2 : A is to apply the rule →E. Thus the type system is said
to be syntax-directed in that the syntactic form of expression e in a judgment Γ ` e : A decides, or directs,
the rule to be applied. Since the syntax-directedness of the type system decides a unique typing rule
R for deducing Γ ` e : A, the premises of the rule R may be assumed to hold whenever Γ ` e : A holds.
For example, Γ ` e1 e2 : A can be proven only by applying the rule →E, from which we may conclude
that the two premises Γ ` e1 : B→A and Γ ` e2 : B hold for some type B. This is called the inversion
property which inverts the typing rule so that its conclusion justifies the use of its premises. We state the
inversion property as a separate lemma.

Lemma 4.8 (Inversion). Suppose Γ ` e : C.
If e = x, then x : C ∈ Γ.
If e = λx :A. e′, then C = A→B and Γ, x : A ` e′ : B for some type B.
If e = e1 e2, then Γ ` e1 : A→C and Γ ` e2 : A for some type A.
If e = true, then C = bool.
If e = false, then C = bool.
If e = if eb then e1 else e2, then Γ ` eb : bool and Γ ` e1 : C and Γ ` e2 : C .

Proof. By the syntax-directedness of the type system. A formal proof proceeds by rule induction on the
judgment Γ ` e : C.

Proof of Theorem 4.4. By rule induction on the judgment e 7→ e′.

Case
e1 7→ e′1

e1 e2 7→ e′1 e2
Lam

Γ ` e1 e2 : A assumption
Γ ` e1 : B→A and Γ ` e2 : B for some type B by Lemma 4.8
Γ ` e′1 : B→A by induction hypothesis on e1 7→ e′1 with Γ ` e1 : B→A

Γ ` e′1 e2 : A from
Γ ` e′1 : B→A Γ ` e2 : B

Γ ` e′1 e2 : A
→E

Case
e2 7→ e′2

(λx :B. e′1) e2 7→ (λx :B. e′1) e
′
2

Arg

Γ ` (λx :B. e′1) e2 : A assumption
Γ ` λx :B. e′1 : B→A and Γ ` e2 : B by Lemma 4.8
Γ ` e′2 : B by induction hypothesis on e2 7→ e′2 with Γ ` e2 : B

Γ ` (λx :B. e′1) e
′
2 : A from

Γ ` λx :B. e′1 : B→A Γ ` e′2 : B

Γ ` (λx :B. e′1) e
′
2 : A

→E

Case (λx :B. e′1) v 7→ [v/x]e′1
App

Γ ` (λx :B. e′1) v : A assumption
Γ ` λx :B. e′1 : B→A and Γ ` v : B by Lemma 4.8
Γ, x : B ` e′1 : A by Lemma 4.8 on Γ ` λx :B. e′1 : B→A
Γ ` [v/x]e′1 : A by applying Lemma 4.6 to Γ ` v : B and Γ, x : B ` e′1 : A

Case
eb 7→ e′b

if eb then e1 else e2 7→ if e′b then e1 else e2
If

Γ ` if eb then e1 else e2 : A assumption
Γ ` eb : bool and Γ ` e1 : A and Γ ` e2 : A by Lemma 4.8
Γ ` e′b : bool by induction hypothesis on eb 7→ e′b with Γ ` eb : bool

Γ ` if e′b then e1 else e2 : A from
Γ ` e′b : bool Γ ` e1 : A Γ ` e2 : A

Γ ` if e′b then e1 else e2 : A
If

Case if true then e1 else e2 7→ e1
If true

Γ ` if true then e1 else e2 : A assumption
Γ ` true : bool and Γ ` e1 : A and Γ ` e2 : A by Lemma 4.8
Γ ` e1 : A
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Case if false then e1 else e2 7→ e2
If false

(Similar to the case for the rule If true)

4.5 Exercises
Exercise 4.9. Prove Theorem 4.4 by rule induction on the judgment Γ ` e : A.

Exercise 4.10. For the simply typed λ-calculus considered in this chapter, prove the following structural
property. The property is called contraction because it enables us to contract x : A, x : A in a typing
context to x : A.

If Γ, x : A, x : A ` e : C , then Γ, x : A ` e : C .

In your proof, you may assume that a typing context Γ is an unordered set. That is, you may identify
typing contexts up to permutation. For example, Γ, x : A, y : B is identified with Γ, y : B, x : A. As is
already implied by the theorem, however, you may not assume that variables in a typing context are
all distinct. A typing context may even contain multiple bindings with different types for the same
variable. For example, Γ = Γ′, x : A, x : B is a valid typing context even if A 6= B. (In this case, x can
have type A or type B, and thus typechecking is ambiguous. Still the type system is sound.)
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Chapter 5

Extensions to the simply typed
λ-calculus

This chapter presents three extensions to the simply typed λ-calculus: product types, sum types, and the
fixed point construct. Product types account for pairs, tuples, records, and units in SML. Sum types are
sometimes (no pun intended!) called disjoint unions and can be thought of as special cases of datatypes
in SML. Like the fixed point combinator for the untyped λ-calculus, the fixed point construct enables us to
encode recursive functions in the simply typed λ-calculus. Unlike the fixed point combinator, however,
it is not syntactic sugar: it cannot be written as another expression and its addition strictly increases the
expressive power of the simply typed λ-calculus.

5.1 Product types

The idea behind product types is that a value of a product type A1 ×A2 contains a value of type A1

and also a value of type A2. In order to create an expression of type A1 ×A2, therefore, we need two
expressions: one of type A1 and another of type A2; we use a pair (e1, e2) to pair up two expressions
e1 and e2. Conversely, given an expression of type A1 ×A2, we may need to extract its individual
components. We use projections fst e and snd e to retrieve the first and the second component of e,
respectively.

type A ::= · · · | A×A
expression e ::= · · · | (e, e) | fst e | snd e

As with function types, a typing rule for product types is either an introduction rule or an elimina-
tion rule. Since there are two kinds of projections, we need two elimination rules (×E1 and ×E2):

Γ ` e1 : A1 Γ ` e2 : A2

Γ ` (e1, e2) : A1 ×A2

×I
Γ ` e : A1 ×A2

Γ ` fst e : A1

×E1

Γ ` e : A1 ×A2

Γ ` snd e : A2

×E2

As for reduction rules, there are two alternative strategies which differ in the definition of values
of product types (just like there are two reduction strategies for function types). If we take an eager
approach, we do not regard (e1, e2) as a value; only if both e1 and e2 are values do we regard it as a
value, as stated in the following definition of values:

value v ::= · · · | (v, v)

Here the ellipsis · · · denotes the previous definition of values which is irrelevant to the present dis-
cussion of product types. Then the eager reduction strategy is specified by the following reduction
rules:
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e1 7→ e′1
(e1, e2) 7→ (e′1, e2)

Pair
e2 7→ e′2

(v1, e2) 7→ (v1, e
′
2)

Pair ′

e 7→ e′

fst e 7→ fst e′
Fst

fst (v1, v2) 7→ v1
Fst ′

e 7→ e′

snd e 7→ snd e′
Snd

snd (v1, v2) 7→ v2
Snd ′

Alternatively we may take a lazy approach which regards (e1, e2) as a value:

value v ::= · · · | (e, e)

The lazy reduction strategy reduces (e1, e2) “lazily” in that it postpones the reduction of e1 and e2 until
the result is explicitly requested. It is specified by the following reduction rules:

e 7→ e′

fst e 7→ fst e′
Fst

fst (e1, e2) 7→ e1
Fst ′

e 7→ e′

snd e 7→ snd e′
Snd

snd (e1, e2) 7→ e2
Snd ′

Exercise 5.1. Why is it a bad idea to reduce fst (e1, e2) to e1 (and similarly for snd (e1, e2)) under the
eager reduction strategy?

In order to incorporate these reduction rules into the operational semantics, we extend the definition
of FV(e) and [e′/x]e accordingly:

FV((e1, e2)) = FV(e1) ∪ FV(e2)
FV(fst e) = FV(e)

FV(snd e) = FV(e)

[e′/x](e1, e2) = ([e′/x]e1, [e
′/x]e2)

[e′/x]fst e = fst [e′/x]e
[e′/x]snd e = snd [e′/x]e

5.2 General product types and unit type
Product types are easily generalized to n-ary cases A1×A2× · · · ×An. A tuple (e1, e2, · · · , en) has a
general product type A1×A2× · · · ×An if ei has type Ai for 1 ≤ i ≤ n. A projection proji e now uses an
index i to indicate which component to retrieve from e.

type A ::= · · · | A1×A2× · · · ×An

expression e ::= · · · | (e1, e2, · · · , en) | proji e

Γ ` ei : Ai 1 ≤ i ≤ n

Γ ` (e1, e2, · · · , en) : A1×A2× · · · ×An
×I

Γ ` e : A1×A2× · · · ×An 1 ≤ i ≤ n

Γ ` proji e : Ai
×Ei

As in binary cases, eager and lazy reduction strategies are available for general product types. Below
we give the specification of the eager reduction strategy; the lazy reduction strategy is left as an exercise.

value v ::= · · · | (v1, v2, · · · , vn)

ei 7→ e′i
(v1, v2, · · · , vi−1, ei, · · · , en) 7→ (v1, v2, · · · , vi−1, e

′
i, · · · , en)

Pair

e 7→ e′

proji e 7→ proji e
′

Proj
1 ≤ i ≤ n

proji (v1, v2, · · · , vn) 7→ vi
Proj ′

Of particular importance is the special case n = 0 in a general product type A1×A2× · · · ×An. To
better understand the ramifications of setting n to 0, let us interpret the rules ×I and ×Ei as follows:
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• The rule ×I says that in order to build a value of type A1×A2× · · · ×An, we have to provide n
different values of types A1 through An in the premise.

• The rule ×Ei says that since we have already provided n different values of types A1 through An,
we may retrieve any of these values individually in the conclusion.

Now let us see what happens when we set n to 0:

• In order to build a value of type A1×A2× · · · ×A0, we have to provide 0 different values. That is,
we do not have to provide any value in the premise at all!

• Since we have provided 0 different values, we cannot retrieve any value in the conclusion at all.
That is, the rule ×Ei never applies if n = 0!

The type unit is a general product type A1×A2× · · · ×An with n = 0. It has an introduction rule
with no premise (because we do not have to provide any value), but has no elimination rule (because
there is no way to retrieve a value after providing no value). An expression () is called a unit and is the
only value belonging to type unit. The typing rule Unit below is the introduction rule for unit:

type A ::= · · · | unit

expression e ::= · · · | ()
value v ::= · · · | ()

Γ ` () : unit
Unit

The type unit is useful when we introduce computational effects such as input/output and mutable
references. For example, a function returning a character typed by the user does not need an argument
of particular meaning. Hence it may use unit as the type of its arguments.

5.3 Sum types

The idea behind sum types is that a value of a sum type A1+A2 contains a value of type A1 or else a
value of type A2, but not both. Therefore there are two ways to create an expression of type A1+A2:
using an expression e1 of type A1 and using an expression e2 of type A2. In the first case, we use a
left injection, or inleft for short, inlA2

e1; in the second case, we use a right injection, or inright for short,
inrA1

e2.
Then how do we extract back a value from an expression of type A1+A2? In general, it is unknown

which of the two types A1 and A2 has been used in creating a value of type A1+A2. For example, in
the body e of a λ-abstraction λx :A1+A2. e, nothing is known about variable x except that its value can
be created from a value of either type A1 or type A2. In order to examine the value associated with an
expression of type A1+A2, therefore, we have to provide for two possibilities: when a left injection has
been used and when a right injection has been used. We use a case expression case e of inl x1. e1 | inr x2. e2
to perform a case analysis on expression e which must have a sum type A1+A2. Informally speaking,
if e has been created with a value v1 of type A1, the case expression takes the first branch, reducing e1
after binding x1 to v1; otherwise it takes the second branch, reducing e2 in an analogous way.

type A ::= · · · | A+A
expression e ::= · · · | inlA e | inrA e | case e of inl x. e | inr x. e

As is the case with function types and product types, a typing rule for sum types is either an intro-
duction rule or an elimination rule. Since there are two ways to create an expression of type A1+A2,
there are two introduction rules (+IL for inlA e and+IR for inrA e):
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Γ ` e : A1

Γ ` inlA2
e : A1+A2

+IL
Γ ` e : A2

Γ ` inrA1
e : A1+A2

+IR

Γ ` e : A1+A2 Γ, x1 : A1 ` e1 : C Γ, x2 : A2 ` e2 : C

Γ ` case e of inl x1. e1 | inr x2. e2 : C
+E

In the rule+E, expressions e1 and e2 must have the same type; otherwise we cannot statically determine
the type of the whole case expression.

As with product types, reduction rules for sum types depend on the definition of values of sum
types. An eager approach uses the following definition of values:

value v ::= · · · | inlA v | inrA v

Then the eager reduction strategy is specified by the following reduction rules:

e 7→ e′

inlA e 7→ inlA e′
Inl

e 7→ e′

inrA e 7→ inrA e′
Inr

e 7→ e′

case e of inl x1. e1 | inr x2. e2 7→ case e′ of inl x1. e1 | inr x2. e2
Case

case inlA v of inl x1. e1 | inr x2. e2 7→ [v/x1]e1
Case ′

case inrA v of inl x1. e1 | inr x2. e2 7→ [v/x2]e2
Case ′′

A lazy approach regards inlA e and inrA e as values regardless of the form of expression e:

value v ::= · · · | inlA e | inrA e

Then the lazy reduction strategy is specified by the following reduction rules:

e 7→ e′

case e of inl x1. e1 | inr x2. e2 7→ case e′ of inl x1. e1 | inr x2. e2
Case

case inlA e of inl x1. e1 | inr x2. e2 7→ [e/x1]e1
Case ′

case inrA e of inl x1. e1 | inr x2. e2 7→ [e/x2]e2
Case ′′

In extending the definition of FV(e) and [e′/x]e for sum types, we have to be careful about case
expressions. Intuitively x1 and x2 in case e of inl x1. e1 | inr x2. e2 are bound variables, just like x in
λx :A. e is a bound variable. Thus x1 and x2 are not free variables in case e of inl x1. e1 | inr x2. e2, and
may have to be renamed to avoid variable captures in a substitution [e′/x]case e of inl x1. e1 | inr x2. e2.

FV(inlA e) = FV(e)
FV(inrA e) = FV(e)

FV(case e of inl x1. e1 | inr x2. e2) = FV(e) ∪ (FV(e1) − {x1}) ∪ (FV(e2) − {x2})

[e′/x]inlA e = inlA [e′/x]e
[e′/x]inrA e = inrA [e′/x]e

[e′/x]case e of inl x1. e1 | inr x2. e2 = case [e′/x]e of inl x1. [e
′/x]e1 | inr x2. [e

′/x]e2
if x 6= x1, x1 6∈ FV(e′), x 6= x2, x2 6∈ FV(e′)

As an example of using sum types, let us encode the type bool. The inherent capability of a boolean
value is to choose one of two different options, as mentioned in Section 3.4.1. Hence a sum type
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unit+unit is sufficient for encoding the type bool because the left unit corresponds to the first option
and the right unit to the second option. Then true, false, and if e then e1 else e2 are encoded as follows,
where x1 and x2 are dummy variables of no significance:

true = inlunit ()
false = inrunit ()

if e then e1 else e2 = case e of inl x1. e1 | inr x2. e2

Sum types are easily generalized to n-ary cases A1+A2+· · ·+An. Here we discuss the special case
n = 0.

Consider a general sum type A = A1+A2+· · ·+An. We have n different ways of creating a value of
type A: by providing a value of type A1, a value of type A2, · · · , and a value of type An. Now what
happens if n = 0? We have 0 different ways of creating a value of type A, which is tantamount to saying
that there is no way to create a value of type A. Therefore it is impossible to create a value of type A!

Next suppose that an expression e has type A = A1+A2+· · ·+An. In order to examine the value
associated with e and obtain an expression of another type C, we have to consider n different possibili-
ties. (See the rule +E for the case n = 2.) Now what happens if n = 0? We have to consider 0 different
possibilities, which is tantamount to saying that we do not have to consider anything at all. Therefore
we can obtain an expression of an arbitrary type C for free!

The type void is a general sum type A1+A2+· · ·+An with n = 0. It has no introduction rule because
a value of type void is impossible to create. Consequently there is no value belonging to type void. The
typing rule Abort below is the elimination rule for void; abortA e is called an abort expression.

type A ::= · · · | void

expression e ::= · · · | abortA e

Γ ` e : void
Γ ` abortC e : C

Abort

There is no reduction rule for an abort expression abortA e: if we keep reducing expression e, we
will eventually obtain a value of type void, which must never happen because there is no value of type
void. So we stop!

The rule Abort may be a bit disquieting because its premise appears to contradict the fact that there is
no value of type void. That is, if there is no value of type void, how can we possibly create an expression
of type void? The answer is that we can never create a value of type void, but we may still “assume” that
there is a value of type void. For example, λx :void. abortA x is a well-typed expression of type void→A
in which we “assume” that variable x has type void. In essence, there is nothing wrong with making an
assumption that something impossible has actually happened.

5.4 Fixed point construct
In the untyped λ-calculus, the fixed point combinator is syntactic sugar which is just a particular ex-
pression. We may hope, then, that encoding recursive functions in the simply typed λ-calculus boils
down to finding a type for the fixed point combinator from the untyped λ-calculus. Unfortunately the
fixed point combinator is untypable in the sense that we cannot assign a type to it by annotating all
bound variables in it with suitable types. Thus the fixed point combinator cannot be an expression in
the simply typed λ-calculus.

It is not difficult to see why the fixed point combinator is untypable. Consider the fixed point com-
binator for the call-by-value strategy in the untyped λ-calculus:

λF. (λf. F (λx. f f x)) (λf. F (λx. f f x))

Let us assign a type A to variable f :

λF. (λf :A.F (λx. f f x)) (λf :A.F (λx. f f x))
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Since f in f f x is applied to f itself which is an expression of type A, it must have a type A→B for
some type B. Since f can have only a single unique type, A and A→B must be identical, which is
impossible.

Thus we are led to introduce a fixed point construct fix x :A. e as a primitive construct (as opposed
to syntactic sugar) which cannot be rewritten as an existing expression in the simply typed λ-calculus:

expression e ::= · · · | fix x :A. e

fix x :A. e is intended to find a fixed point of a λ-abstraction λx :A. e. The typing rule Fix states that a
fixed point is defined on a function of type A→A only, in which case it has also type A:

Γ, x : A ` e : A

Γ ` fix x :A. e : A
Fix

Since fix x :A. e is intended as a fixed point of a λ-abstraction λx :A. e, the definition of fixed point
justifies the following (informal) equation:

fix x :A. e = (λx :A. e) fix x :A. e

As (λx :A. e) fix x :A. e reduces to [fix x :A. e/x]e by the β-reduction, we obtain the following reduction
rule for the fixed point construct:

fix x :A. e 7→ [fix x :A. e/x]e
Fix

In extending the definition of FV(e) and [e′/x]e, we take into account the fact that y in fix y :A. e is a
bound variable:

FV(fix x :A. e) = FV(e) − {x}
[e′/x]fix y :A. e = fix y :A. [e′/x]e if x 6= y, y 6∈ FV(e′)

In the case of the call-by-name strategy, the rule Fix poses no particular problem. In the case of
the call-by-value strategy, however, a reduction by the rule Fix may fall into an infinite loop because
[fix x :A. e/x]e needs to be further reduced unless e is already a value:

fix x :A. e 7→ [fix x :A. e/x]e 7→ · · ·

For this reason, a typical functional language based on the call-by-value strategy requires that e in
fix x :A. e be a λ-abstraction (among all those values including integers, booleans, λ-abstractions, and so
on). Hence it allows the fixed point construct of the form fix f :A→B. λx :A. e only, which implies that
it uses the fixed point construct only to define recursive functions. For example, fix f :A→B. λx :A. e
may be thought of as a recursive function f of typeA→B whose formal argument is x and whose body
is e. Note that its reduction immediately returns a value:

fix f :A→B. λx :A. e 7→ λx :A. [fix f :A→B. λx :A. e/f ]e

One important question remains unanswered: how do we encode mutually recursive functions?
For example, how do we encode two mutually recursive functions f1 of type A1→B1 and f2 of type
A2→B2? The trick is to find a fixed point of a product type (A1→B1) × (A2→B2):

fix f12 : (A1→B1) × (A2→B2). (λx1 :A1. e1, λx2 :A2. e2)

In expressions e1 and e2, we use fst f12 and snd f12 to refer to f1 and f2, respectively. To be precise,
therefore, e in fix x :A. e can be not only a λ-abstraction but also a pair/tuple of λ-abstractions.
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type A ::= · · · | A× A | unit | A+A | void

expression e ::= · · · | (e, e) | fst e | snd e | () | inlA e | inrA e | case e of inl x. e | inr x. e | fix x :A. e
value v ::= · · · | (v, v) | () | inlA v | inrA v

Γ ` e1 : A1 Γ ` e2 : A2

Γ ` (e1, e2) : A1 ×A2

×I
Γ ` e : A1 ×A2

Γ ` fst e : A1

×E1

Γ ` e : A1 ×A2

Γ ` snd e : A2

×E2 Γ ` () : unit
Unit

Γ ` e : A1

Γ ` inlA2
e : A1+A2

+IL
Γ ` e : A2

Γ ` inrA1
e : A1+A2

+IR

Γ ` e : A1+A2 Γ, x1 : A1 ` e1 : C Γ, x2 : A2 ` e2 : C

Γ ` case e of inl x1. e1 | inr x2. e2 : C
+E

Γ, x : A ` e : A

Γ ` fix x :A. e : A
Fix

e1 7→ e′1
(e1, e2) 7→ (e′1, e2)

Pair
e2 7→ e′2

(v1, e2) 7→ (v1, e
′
2)

Pair ′ e 7→ e′

fst e 7→ fst e′
Fst

fst (v1, v2) 7→ v1
Fst ′

e 7→ e′

snd e 7→ snd e′
Snd

snd (v1, v2) 7→ v2
Snd ′ e 7→ e′

inlA e 7→ inlA e′
Inl

e 7→ e′

inrA e 7→ inrA e′
Inr

e 7→ e′

case e of inl x1. e1 | inr x2. e2 7→ case e′ of inl x1. e1 | inr x2. e2
Case

case inlA v of inl x1. e1 | inr x2. e2 7→ [v/x1]e1
Case ′

case inrA v of inl x1. e1 | inr x2. e2 7→ [v/x2]e2
Case ′′

fix x :A. e 7→ [fix x :A. e/x]e
Fix

Figure 5.1: Definition of the extended simply typed λ-calculus with the eager reduction strategy

5.5 Type inhabitation
We say that a type A is inhabited if there exists an expression of type A. For example, the function type
A→A is inhabited for any typeA because λx :A. x is an example of such an expression. Interestingly not
every type is inhabited in the simply typed λ-calculus without the fixed point construct. For example,
there is no expression of type ((A→B)→A)→A.1 Consequently, in order to use an expression of type
((A→B)→A)→A, we have to introduce it as a primitive construct which then strictly increases the
expressive power of the simply typed λ-calculus. (callcc in Chapter 10 can be thought of such a primitive
construct.)

The presence of the fixed point construct, however, completely defeats the purpose of introducing
the concept of type inhabitation, since every type is now inhabited: fix x :A. x has type A! In this regard,
the fixed point construct is not a welcome guest to type theory.

5.6 Type safety
This section proves type safety, i.e., progress and type preservation, of the extended simply typed λ-
calculus:

Theorem 5.2 (Progress). If · ` e : A for some typeA, then either e is a value or there exists e′ such that e 7→ e′.

Theorem 5.3 (Type preservation). If Γ ` e : A and e 7→ e′, then Γ ` e′ : A.

We assume the eager reduction strategy and do not consider general product types and general sum
types. Figure 5.1 shows the typing rules and the reduction rules to be considered in the proof. Note that
the extended simply typed λ-calculus does not include an abort expression abortA e which destroys the
progress property. (Why?)

The proof of progress extends the proof of Theorem 4.3. First we extend the canonical forms lemma
(Lemma 4.5).

1In logic, ((A→B)→A)→A is called Peirce’s Law. Note that it is not Pierce’s Law!
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Lemma 5.4 (Canonical forms).
If v is a value of type A1 ×A2, then v is a pair (v1, v2) of values.
If v is a value of type unit, then v is ().
If v is a value of type A1+A2, then v is either inlA2

v′ or inrA1
v′.

There is no value of type void.

Proof. By case analysis of v.
Suppose that v is a value of type A1 ×A2. The only typing rule that assigns a product type A1 ×A2

to a value is the rule ×I. Therefore v must be a pair. Since v is a value, it must be a pair (v1, v2) of values.
Note that other typing rules may assign a product type, but never to a value.

Suppose that v is a value of type unit. The only typing rule that assigns type unit to a value is the
rule Unit. Therefore v must be ().

Suppose that v is a value of type A1+A2. The only typing rules that assign a sum type A1+A2 to a
value are the rules+IL and+IR. Therefore v must be either inlA2

e or inrA1
e. Since v is a value, it must be

either inlA2
v′ or inrA1

v′.
There is no value of type void because there is no typing rule assigning type void to a value.
The proof of Theorem 5.2 extends the proof of Theorem 4.3.

Proof of Theorem 5.2. By rule induction on the judgment · ` e : A. If e is already a value, we need no
further consideration. Therefore we assume that e is not a value. Then there are eight cases to consider.

Case
· ` e1 : A1 · ` e2 : A2

· ` (e1, e2) : A1 ×A2

×I where e = (e1, e2) and A = A1 ×A2:

e1 is a value or there exists e′1 such that e1 7→ e′1 by induction hypothesis on · ` e1 : A1

e2 is a value or there exists e′2 such that e2 7→ e′2 by induction hypothesis on · ` e2 : A2

Both e1 and e2 cannot be values simultaneously because e = (e1, e2) is assumed not to be a value.

Subcase: e1 is a value and there exists e′2 such that e2 7→ e′2
(e1, e2) 7→ (e1, e

′
2) by the rule Pair ′

We let e′ = (e1, e
′
2).

Subcase: there exists e′1 such that e1 7→ e′1
(e1, e2) 7→ (e′1, e2) by the rule Pair

We let e′ = (e′1, e2).

Case
· ` e0 : A1 ×A2

· ` fst e0 : A1

×E1 where e = fst e0 and A = A1:

e0 is a value or there exists e′0 such that e0 7→ e′0 by induction hypothesis on · ` e0 : A1 ×A2

e0 cannot be a value because e = fst e0 is assumed not to be a value.
fst e0 7→ fst e′0 by the rule Fst

We let e′ = fst e′0.

(The cases for the rules ×E2,+IL, and+IR are all similar.)

Case
· ` es : A1+A2 x1 : A1 ` e1 : A x2 : A2 ` e2 : A

· ` case es of inl x1. e1 | inr x2. e2 : A
+E where e = case es of inl x1. e1 | inr x2. e2:

es is a value or there exists e′s such that es 7→ e′s by induction hypothesis on · ` es : A1+A2

Subcase: es is a value
es = inlA2

v or es = inrA1
v by Lemma 5.4

e 7→ [v/x1]e1 or e 7→ [v/x2]e2 by the rule Case ′ or Case ′′

We let e′ = [v/x1]e1 or e′ = [v/x2]e2.

Subcase: there exists e′s such that es 7→ e′s
case es of inl x1. e1 | inr x2. e2 7→ case e′s of inl x1. e1 | inr x2. e2 by the rule Case

We let e′ = case e′s of inl x1. e1 | inr x2. e2.
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Case
x : A ` e0 : A

· ` fix x :A. e0 : A
Fix where e = fix x :A. e0:

fix x :A. e0 7→ [fix x :A. e0/x]e0 by the rule Fix

We let e′ = [fix x :A. e0/x]e0.
The proof of type preservation extends the proof of Theorem 4.4. First we extend the substitution

lemma (Lemma 4.6) and the inversion lemma (Lemma 4.8).

Lemma 5.5 (Substitution). If Γ ` e : A and Γ, x : A ` e′ : C, then Γ ` [e/x]e′ : C.

Proof of Lemma 5.5. By rule induction on the judgment Γ, x : A ` e′ : C . The proof extends the proof of
Lemma 4.6.

The case for the rule ×I is similar to the case for the rule →E. The cases for the rules ×E1, ×E2, +IL,
and +IR are also similar to the case for the rule →E except that e′ contains only one smaller subexpres-
sion (e.g., e′ = fst e0). The case for the rule Fix is similar to the case for the rule →I.

Case
Γ, x : A ` e0 : A1+A2 Γ, x : A, x1 : A1 ` e1 : C Γ, x : A, x2 : A2 ` e2 : C

Γ, x : A ` case e0 of inl x1. e1 | inr x2. e2 : C
+E

where e′ = case e0 of inl x1. e1 | inr x2. e2:
Without loss of generality, we may assume x1 6= x, x1 6∈ FV(e), x2 6= x, and x2 6∈ FV(e) because we can
apply α-conversions to x1 and x2 if necessary. This case is similar to the case for the rule →I.
Γ ` [e/x]e0 : A1+A2 by induction hypothesis on Γ, x : A ` e0 : A1+A2

Γ, x1 : A1 ` [e/x]e1 : C by induction hypothesis on Γ, x : A, x1 : A1 ` e1 : C
Γ, x2 : A2 ` [e/x]e2 : C by induction hypothesis on Γ, x : A, x2 : A2 ` e2 : C
Γ ` case [e/x]e0 of inl x1. [e/x]e1 | inr x2. [e/x]e2 : C by the rule+E

[e/x]case e0 of inl x1. e1 | inr x2. e2 = case [e/x]e0 of inl x1. [e/x]e1 | inr x2. [e/x]e2
from x1 6= x, x1 6∈ FV(e), x2 6= x, x2 6∈ FV(e)

Γ ` [e/x]case e0 of inl x1. e1 | inr x2. e2 : C

Case Γ, x : A ` () : unit
Unit where e′ = () and C = unit:

Γ ` () : unit by the rule Unit

Γ ` [e/x]() : unit from [e/x]() = ()

Lemma 5.6 (Inversion). Suppose Γ ` e : C.
If e = (e1, e2), then C = A1 ×A2 and Γ ` e1 : A1 and Γ ` e2 : A2 for some types A1 and A2.
If e = fst e′, then Γ ` e′ : C ×A2 for some type A2.
If e = snd e′, then Γ ` e′ : A1 × C for some type A1.
If e = (), then C = unit.
If e = inlA2

e′, then C = A1+A2 and Γ ` e′ : A1 for some type A1.
If e = inrA1

e′, then C = A1+A2 and Γ ` e′ : A2 for some type A2.
If e = case e0 of inl x1. e1 | inr x2. e2, then Γ ` e0 : A1+A2, Γ, x1 : A1 ` e1 : C, and Γ, x2 : A2 ` e2 : C

for some types A1 and A2.
If e = fix x :A. e′, then C = A and Γ, x : A ` e′ : A.

Proof. By the syntax-directedness of the type system.
The proof of Theorem 5.3 extends the proof of Theorem 4.4.

Proof of Theorem 5.3. By rule induction on the judgment e 7→ e′. We consider two cases that use Lemma 5.5.
All other cases use a simple pattern (as in the case for the rule Lam): apply Lemma 5.6 to Γ ` e : A, ap-
ply induction hypothesis, and apply a typing rule to deduce Γ ` e′ : A.

Case case inlC v of inl x1. e1 | inr x2. e2 7→ [v/x1]e1
Case ′

Γ ` case inlC v of inl x1. e1 | inr x2. e2 : A assumption
Γ ` inlC v : A1+A2 and Γ, x1 : A1 ` e1 : A and Γ, x2 : A2 ` e2 : A for some types A1 and A2

by Lemma 5.6
Γ ` v : A1 and C = A2 by Lemma 5.6 on Γ ` inlC v : A1+A2

Γ ` [v/x1]e1 : A by applying Lemma 5.5 to Γ ` v : A1 and Γ, x1 : A1 ` e1 : A
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(The case for the rule Case ′′ is similar.)

Case fix x :C. e0 7→ [fix x :C. e0/x]e0
Fix

Γ ` fix x :C. e0 : A assumption
A = C and Γ, x : C ` e0 : C by Lemma 5.6
Γ ` fix x :C. e0 : C from Γ ` fix x :C. e0 : A and A = C
Γ ` [fix x :C. e0/x]e0 : C by applying Lemma 5.5 to Γ ` fix x :C. e0 : C and Γ, x : C ` e0 : C
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Chapter 6

Mutable References

In the (typed or untyped) λ-calculus, or in “pure” functional languages, a variable is immutable in that
once bound to a value as the result of a substitution, its contents never change. While it may appear
to be too restrictive or even strange from the perspective of imperative programming, immutability of
variables allows us to consider λ-abstractions as equivalent to mathematical functions whose meaning
does not change, and thus makes programs more readable than in other programming paradigms. For
example, the following λ-abstraction denotes a mathematical function taking a boolean value x and
returning a logical conjunction of x and y where the value of y is determined at the time of evaluating
the λ-abstraction:

λx :bool. if x then y else false

Then the meaning of the λ-abstraction does not change throughout the evaluation; hence we only have
to look at the λ-abstraction itself to learn what it means.

This chapter extends the simply typed λ-calculus with mutable references, or references for short, in
the presence of which λ-abstractions no longer denote mathematical functions. We will introduce three
new constructs for manipulating references; references may be thought of as another name for pointers
familiar from imperative programming, and all these constructs find their counterparts in imperative
languages:

• ref e creates or allocates a reference pointing to the value to which e evaluates.

• !e obtains a reference by evaluating e, and then dereferences it, i.e., retrieves the contents of it.

• e := e′ obtains a reference and a value by evaluating e and e′, respectively, and then updates the
contents of the reference with the value. That is, it assigns a new value to a reference.

It is easy to see that if a λ-abstraction is “contaminated” with references, it no longer denotes a math-
ematical function. For example, the meaning of the following λ-abstraction depends on the contents of
a reference in y, and we cannot decide its meaning once and for all:

λx :bool. if x then !y else false

In other words, each time we invoke the above λ-abstraction, we have to look up an environment (called
a store or a heap) to obtain the value of !y. It is certainly either true or false, but we can never decide its
meaning by looking only at the λ-abstraction itself. Hence it does not denote a mathematical function.

In general, we refer to those constructs that destroy the connection between λ-abstractions and math-
ematical functions, or the “purity” of the λ-calculus, as computational effects. References are the most
common form of computational effects; other kinds of computational effects include exceptions, con-
tinuations, and input/output. A functional language with such features as references is often called an
“impure” functional language.1

Below we extend the type system and the operational semantics of the simply typed λ-calculus to
incorporate the three constructs for references. The development will be incremental in that if we re-
move the new constructs, the “impure” definition reverts to the “pure” definition of the simply typed

1 SML is an impure functional language. Haskell is a pure functional language, although it comes with a few impure language
constructs.
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λ-calculus. An important implication is that immutability of variables is not affected by the new con-
structs — it is the contents of a reference that change; the contents of a variable never change!

6.1 Abstract syntax and type system
We augment the simply typed λ-calculus with three constructs for references; for the sake of simplicity,
we do not consider base types P :

type A ::= P | A→A | unit | ref A
expression e ::= x | λx :A. e | e e | () | ref e | !e | e := e

value v ::= λx :A. e | ()

A reference type ref A is the type for references pointing to values of type A, or equivalently, the type for
references whose contents are values of type A. All the constructs for references use reference types,
and behave as follows:

• ref e evaluates e to obtain a value v and then allocates a reference initialized with v; hence, if e has
type A, then ref e has type ref A. It uses the same keyword ref as in reference types to maintain
consistency with the syntax of SML.

• !e evaluates e to obtain a reference and then retrieves its contents; hence, if e has type ref A, then
!e has type A.

• e := e′ evaluates e to obtain a reference and then updates its contents with a value obtained by
evaluating e′. Since the result of updating the contents of a reference is computationally meaning-
less, e := e′ is assigned a unit type unit.

Thus we obtain the following typing rules for the constructs for references:

Γ ` e : A
Γ ` ref e : ref A

Ref
Γ ` e : ref A
Γ ` !e : A

Deref
Γ ` e : ref A Γ ` e′ : A

Γ ` e := e′ : unit
Assign

For proving type safety, we need to elaborate the typing judgment Γ ` e : A (see Section 6.3), but for
typechecking a given expression, the above typing rules suffice.

Before we give the reduction rules for the new constructs, let us consider a couple of examples
exploiting references. Both examples use syntactic sugar let x = e in e′ for (λx :A. e′) e for some type A.
That is, let x = e in e′ first evaluates e and store the result in x; then it evaluates e′. We may think of the
rule Let below as the typing rule for let x = e in e′:

Γ ` e : A Γ, x : A ` e′ : B

Γ ` let x = e in e′ : B
Let

Both examples also assume common constructs for types bool and int (e.g., if e then e1 else e2 as a condi-
tional construct, + for addition, − for subtraction, = for equality, and so on). We use a wildcard pattern

for a variable not used in the body of a λ-abstraction.
The first example exploits references to simulate arrays of integers. We choose a functional repre-

sentation of arrays by defining type iarray for arrays of integers as follows:

iarray = ref (int→ int)

That is, we represent an array of integers as a function taking an index (of type int) and returning a
corresponding element of the array. We need the following constructs for arrays:

• new : unit→ iarray for creating a new array.
new () returns a new array of indefinite size; all elements are initialized as 0.

• access : iarray→ int→ int for accessing an array.
access a i returns the i-th element of array a.
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• update : iarray→ int→ int→unit for updating an array.
update a i n updates the i-the element of array a with integer n.

Exercise 6.1. Implement new, access, and update.

We implement new and access according to the definition of type iarray:

new = λ :unit. ref λi : int. 0
access = λa : iarray. λi : int. (!a) i

To implement update, we have to first retrieve a function of type int→ int from a given array and then
build a new function of type int→ int:

update = λa : iarray. λi : int. λn : int.
let old = !a in

a := λj : int. if i = j then n else old j

The following implementation of update has a correct type, but is wrong: a in the body does not point
to the old array that exists before the update, but ends up pointing to the same array that is created after
the update:

update = λa : iarray. λi : int. λn : int.
a := λj : int. if i = j then n else (!a) j

The wrong implementation of update illustrates that a reference a can be assigned a value that deref-
erences the same reference a. We can exploit such “self-references” to implement recursive functions
without using the fixed point construct. The second example implements the following recursive func-
tion (written in the syntax of SML) which takes an integer n and returns the sum of integers from 0 to
n:

fun f n : int. if n = 0 then 0 else n+ f (n− 1)

To implement the above recursive function, we first allocate a reference f initialized with a dummy
function of type int→ int. Then we assign the reference f a function which dereferences the same refer-
ence f when its argument is not equal to 0, thereby effecting a recursive call:

let f = ref λn : int. 0 in

let = f := λn : int. if n = 0 then 0 else n+ (!f) (n− 1) in

!f

6.2 Operational semantics
The operational semantics for references needs a reduction judgment that departs from the previous
reduction judgment e 7→ e′ for the simply typed λ-calculus. To see why, consider how to reduce ref v
for a value v. The operational semantics needs to allocate a reference initialized with v, but allocates it
where? In fact, the abstract syntax given in the previous section does not even include expressions for
results of allocating references. That is, what is the syntax for the result of reducing ref v? Thus we are
led to extend both the abstract syntax to include values for references and the reduction judgment to
record the contents of all references allocated during an evaluation.

We use a store ψ to record the contents of all references. A store is a mapping from locations to values,
where a location l is a value for a reference, or simply another name for a reference. (We do not call l
a “pointer” to emphasize that arithmetic operations may not be applied on l.) As we will see in the
reduction rules below, a fresh location l is created only by reducing ref v, in which case the store is
extended so as to map l to v. We define a store as an unordered collection of bindings of the form l 7→ v:

expression e ::= · · · | l location
value v ::= · · · | l location
store ψ ::= · | ψ, l 7→ v

We write dom(ψ) for the domain of ψ, i.e., the set of locations mapped to certain values under ψ.
Formally we define dom(ψ) as follows:

dom(·) = ∅

dom(ψ, l 7→ v) = dom(ψ) ∪ {l}

September 30, 2011 77



We write [l 7→ v]ψ for the store obtained by updating the contents of l in ψ with v. Note that in order for
[l 7→ v]ψ to be defined, l must be in dom(ψ):

[l 7→ v](ψ′, l 7→ v′) = ψ′, l 7→ v

We write ψ(l) for the value to which l is mapped under ψ; in order for ψ(l) to be defined, l must be in
dom(ψ):

(ψ′, l 7→ v)(l) = v

Since the reduction of an expression may need to access or update a store, we use the following
reduction judgment which carries a store along with an expression being reduced:

e | ψ 7→ e′ | ψ′ ⇔ e with store ψ reduces to e′ with store ψ′

In the judgment e | ψ 7→ e′ | ψ′, we definitely have e 6= e′, but ψ and ψ′ may be the same if the reduction
of e does not make a change to ψ. The reduction rules are given as follows:

e1 | ψ 7→ e′1 | ψ′

e1 e2 | ψ 7→ e′1 e2 | ψ′ Lam
e2 | ψ 7→ e′2 | ψ′

(λx :A. e) e2 | ψ 7→ (λx :A. e) e′2 | ψ′
Arg

(λx :A. e) v | ψ 7→ [v/x]e | ψ
App

e | ψ 7→ e′ | ψ′

ref e | ψ 7→ ref e′ | ψ′
Ref

l 6∈ dom(ψ)

ref v | ψ 7→ l | ψ, l 7→ v
Ref ′

e | ψ 7→ e′ | ψ′

!e | ψ 7→ !e′ | ψ′
Deref

ψ(l) = v

!l | ψ 7→ v | ψ
Deref ′

e | ψ 7→ e′′ | ψ′

e := e′ | ψ 7→ e′′ := e′ | ψ′
Assign

e | ψ 7→ e′ | ψ′

l := e | ψ 7→ l := e′ | ψ′ Assign ′

l := v | ψ 7→ () | [l 7→ v]ψ
Assign ′′

Note that locations are runtime values. That is, they are not part of the syntax for the source language;
they are created only at runtime by reducing ref e.

Here is the reduction sequence of the expression in Section 6.1 that builds a recursive function
adding integers from 0 to n. It starts with an empty store and creates a fresh location l to store the
recursive function. Recall that let x = e in e′ is syntactic sugar for (λx :A. e′) e for some type A.

let f = ref λn : int. 0 in

let = f := λn : int. if n = 0 then 0 else n+ (!f) (n− 1) in

!f
| ·

7→
let f = l in
let = f := λn : int. if n = 0 then 0 else n+ (!f) (n− 1) in

!f
| l 7→ λn : int. 0

7→
let = l := λn : int. if n = 0 then 0 else n+ (!l) (n− 1) in

!l
| l 7→ λn : int. 0

7→
let = () in

!l
| l 7→ λn : int. if n = 0 then 0 else n+ (!l) (n− 1)

7→ !l | l 7→ λn : int. if n = 0 then 0 else n+ (!l) (n− 1)

7→ λn : int. if n = 0 then 0 else n+ (!l) (n− 1) | l 7→ λn : int. if n = 0 then 0 else n+ (!l) (n− 1)
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6.3 Type safety
This section proves type safety of the simply typed λ-calculus extended with references. First of all, we
have to extend the type system for locations which are valid (runtime) expressions but have not been
given a typing rule. The development of the typing rule for locations gives rise to a new form of typing
judgment, since deciding the type of a location requires information on a store, but the previous typing
judgment Γ ` e : A does not include information on a store. Then a proof of type safety rewrites the
typing rules Ref, Deref, Assign in terms of the new typing judgment, although these typing rules in their
current form suffice for the purpose of typechecking expressions containing no locations.

Let us begin with the following (blatantly wrong) typing rule for locations:

Γ ` l : ref A
Loc1

The rule Loc1 does not make sense: we wish to assign l a reference type ref A only if it is mapped to a
value of type A under a certain store, but the rule does not even inspect the value to which l is mapped.
The following typing rule uses a new form of typing judgment involving a store ψ, and assigns l a
reference type ref A only if it is mapped to a value of type A under ψ:

ψ(l) = v Γ ` v : A

Γ | ψ ` l : ref A
Loc2

The rule Loc2 is definitely an improvement over the rule Loc1, but it is still inadequate: it uses an
ordinary typing judgment Γ ` v : A on the assumption that value v does not contain locations, but in
general, any value in a store may contain locations. For example, it is perfectly fine to store a pair of
locations in a store. Thus we are led to typecheck v in the premise of the rule Loc2 using the same typing
judgment as in the conclusion:

ψ(l) = v Γ | ψ ` v : A

Γ | ψ ` l : ref A
Loc3

Unfortunately the rule Loc3 has a problem, too: if a location l is mapped to a value containing l under
ψ, the derivation of Γ | ψ ` l : ref A never terminates because of the infinite chain of typing judgments
all of which address the same location l:

ψ(l) = · · · l · · ·

...
Γ | ψ ` l : ref A

Loc3

...
Γ | ψ ` · · · l · · · : A

Γ | ψ ` l : ref A
Loc3

For example, it is impossible to determine the type of a location l that is mapped to a λ-abstraction
λn : int. if n = 0 then 0 else n+ (!l) (n− 1) containing l itself. (Section 6.2 gives an example of creating
such a binding for l.)

We fix the rule Loc3 by analyzing a store only once, rather than each time a location is encountered
during typechecking. To this end, we introduce a store typing context which records types of all values
in a store:

store typing context Ψ ::= · | Ψ, l 7→ A

The idea is that if a store maps location li to value vi of typeAi, it is given a store typing context mapping
li to Ai (for i = 1, · · · , n). Given a store typing context Ψ corresponding to a store ψ, then, we use Ψ,
instead of ψ, for typechecking expressions:

Γ | Ψ ` e : A ⇔ expression e has type A under typing context Γ and store typing context Ψ

We write dom(Ψ) for the domain of Ψ:

dom(·) = ∅

dom(Ψ, l 7→ A) = dom(Ψ) ∪ {l}
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We write Ψ(l) for the type to which l is mapped under Ψ; in order for Ψ(l) to be defined, l must be in
dom(Ψ):

(Ψ′, l 7→ A)(l) = A

Now the typing rule for locations looks up a store typing context included in the typing judgment:

Ψ(l) = A

Γ | Ψ ` l : ref A
Loc

All other typing rules are obtained by replacing Γ ` e : A by Γ | Ψ ` e : A in the previous typing rules:

x : A ∈ Γ
Γ | Ψ ` x : A

Var
Γ, x : A | Ψ ` e : B

Γ | Ψ ` λx :A. e : A→B
→I

Γ | Ψ ` e : A→B Γ | Ψ ` e′ : A

Γ | Ψ ` e e′ : B
→E

Γ | Ψ ` () : unit
Unit

Γ | Ψ ` e : A

Γ | Ψ ` ref e : ref A
Ref

Γ | Ψ ` e : ref A

Γ | Ψ ` !e : A
Deref

Γ | Ψ ` e : ref A Γ | Ψ ` e′ : A

Γ | Ψ ` e := e′ : unit
Assign

The remaining question is: how do we decide a store typing context Ψ corresponding to a store ψ?
We use a new judgment

ψ :: Ψ

to mean that Ψ corresponds to ψ, or simply, ψ is well-typed with Ψ. Then the goal is to give an inference
rule for the judgment ψ :: Ψ.

Suppose that ψ maps li to vi for i = 1, · · · , n. Loosely speaking, Ψ maps li to Ai if vi has type Ai.
Then how do we verify that vi has typeAi? Since we are in the process of deciding Ψ (which is unknown
yet), · | · ` vi : Ai may appear to be the right judgment. The judgment is, however, inadequate because
vi itself may contain locations pointing to other values in the same store ψ. Therefore we have to
typecheck all locations simultaneously using the same typing context currently being decided:

dom(Ψ) = dom(ψ) · | Ψ ` ψ(l) : Ψ(l) for every l ∈ dom(ψ)

ψ :: Ψ
Store

Note that the use of an empty typing context in the premise implies that every value in a well-typed
store is closed.

Type safety is is stated as follows:

Theorem 6.2 (Progress). Suppose that expression e satisfies · | Ψ ` e : A for some store typing context Ψ and
type A. Then either:

(1) e is a value, or
(2) for any store ψ such that ψ :: Ψ, there exist some expression e′ and store ψ′ such that e | ψ 7→ e′ | ψ′.

Theorem 6.3 (Type preservation).

Suppose





Γ | Ψ ` e : A
ψ :: Ψ
e | ψ 7→ e′ | ψ′

. Then there exists a store typing context Ψ′ such that





Γ | Ψ′ ` e′ : A
Ψ ⊂ Ψ′

ψ′ :: Ψ′

.

In Theorem 6.3, ψ′ may extend ψ by the rule Ref ′, in which case Ψ′ also extends Ψ, i.e., Ψ′ ⊃ Ψ and
Ψ′ 6= Ψ. Note also that ψ′ is not always a superset of ψ (i.e., ψ′ 6⊃ ψ) because the rule Assign ′′ updates ψ
without extending it. Even in this case, however, Ψ′ ⊃ Ψ still holds because Ψ′ and Ψ are the same.

We use type safety to show that a well-typed expression cannot go wrong. Suppose that we are re-
ducing a closed well-typed expression e with a well-typed store ψ. That is, ψ :: Ψ and · | Ψ ` e : A hold
for some store typing context Ψ and typeA. If e is already a value, the reduction has been finished. Oth-
erwise Theorem 6.2 guarantees that there exist some expression e′ and store ψ′ such that e | ψ 7→ e′ | ψ′.
By Theorem 6.3, then, there exists a store typing context Ψ′ such that · | Ψ′ ` e′ : A and ψ′ :: Ψ′. That is,
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e′ is a close well-typed expression and ψ′ is a well-typed store (with Ψ′). Therefore the reduction of e
with ψ cannot go wrong!
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Chapter 7

Typechecking

So far, our interpretation of the typing judgment Γ ` e : A has been declarative in the sense that given a
triple of Γ, e, and A, the judgment answers either “yes” (meaning that e has type A under Γ) or “no”
(meaning that e does not have type A under Γ). While the declarative interpretation is enough for
proving type safety of the simply typed λ-calculus, it does not lend itself well to an implementation
of the type system, which takes a pair of Γ and e and decides a type for e under Γ, if one exists. That
is, an implementation of the type system requires not a declarative interpretation but an algorithmic
interpretation of the typing judgment Γ ` e : A such that given Γ and e as input, the interpretation
produces A as output.

This chapter discusses two implementations of the type system. The first employs an algorithmic
interpretation of the typing judgment, and is purely synthetic in that given Γ and e, it synthesizes a type
A such that Γ ` e : A. The second mixes an algorithmic interpretation with a declarative interpretation,
and achieves what is called bidirectional typechecking. It is both synthetic and analytic in that depending
on the form of a given expression e, it requires either only Γ to synthesize a type A such that Γ ` e : A,
or both Γ and A to confirm that Γ ` e : A holds.

7.1 Purely synthetic typechecking
Let us consider a direct implementation of the type system, or equivalently the judgment Γ ` e : A. We
introduce a function typing with the following invariant:

typing (Γ, e, A) = okay if Γ ` e : A holds.
typing (Γ, e, A) = fail if Γ ` e : A does not hold.

Since Γ, e, and A are all given as input, we only have to translate each typing rule in the direction
from the conclusion to the premise(s) (i.e., bottom-up), as illustrated in the pseudocode below:

x : A ∈ Γ
Γ ` x : A

Var ⇔
typing (Γ, x, A) =

if x : A ∈ Γ then okay else fail
Γ, x : A ` e : B

Γ ` λx :A. e : A→B
→I ⇔

typing (Γ, λx :A. e,A→B) =
typing (Γ′, e, B) where Γ′ = Γ, x : A

It is not obvious, however, how to translate the rule →E because both premises require a type A
which does not appear in the conclusion:

Γ ` e : A→B Γ ` e′ : A
Γ ` e e′ : B

→E ⇔

typing (Γ, e e′, B) =
if typing (Γ, e, A→B) = okay

andalso typing (Γ, e′, A) = okay

then okay else fail

where A = ?

Therefore, in order to return okay, typing (Γ, e e′, B) must “guess” a typeA such that both typing (Γ, e, A→B)
and typing (Γ, e′, A) return okay. The problem of guessing such a typeA from e and e′ involves the prob-
lem of deciding the type of a given expression (e.g., deciding type A of expression e′). Thus we need to
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be able to decide the type of a given expression anyway, and are led to interpret the typing judgment
Γ ` e : A algorithmically so that given Γ and e as input, an algorithmic interpretation of the judgment
produces A as output.

We introduce a new judgment Γ ` e �A, called an algorithmic typing judgment, to express the algo-
rithmic interpretation of the typing judgment Γ ` e : A:

Γ ` e �A ⇔ under typing context Γ, the type of expression e is inferred as A

That is, an algorithmic typing judgment Γ ` e �A synthesizes type A (output) for expression e (input)
under typing context Γ (input). Algorithmic typing rules (i.e., inference rules for algorithmic typing
judgments) are as given follows:

x : A ∈ Γ
Γ ` x �A

Vara
Γ, x : A ` e �B

Γ ` λx :A. e �A→B
→Ia

Γ ` e �A→B Γ ` e′ � C A = C
Γ ` e e′ �B

→Ea

Γ ` true � bool
Truea Γ ` false � bool

Falsea

Γ ` e � bool Γ ` e1 �A1 Γ ` e2 �A2 A1 = A2

Γ ` if e then e1 else e2 �A1

Ifa

Note that in the rule →Ea, we may not write the second premise as Γ ` e′ �A (and remove the third
premise) because type C to be inferred from Γ and e′ is unknown in general and must be explicitly
compared with type A as is done in the third premise. (Similarly for types A1 and A2 in the rule Ifa.)
A typechecking algorithm based on the algorithmic typing judgment Γ ` e �A is said to be purely
synthetic.

The equivalence between two judgments Γ ` e �A and Γ ` e : A is stated in Theorem 7.3, whose
proof uses Lemmas 7.1 and 7.2. Lemma 7.1 proves soundness of Γ ` e �A in the sense that if an
algorithmic typing judgment infers typeA for expression e under typing context Γ, then A is indeed the
type for e under Γ. In other words, if an algorithmic typing judgment gives an answer, it always gives
a correct answer and is thus “sound.” Lemma 7.2 proves completeness of Γ ` e �A in the sense that
for any well-typed expression e under typing context Γ, there exists an algorithmic typing judgment
inferring its type. In other words, an algorithmic typing judgment covers all possible cases of well-
typed expressions and is thus “complete.”

Lemma 7.1 (soundness). If Γ ` e �A, then Γ ` e : A.

Proof. By rule induction on the judgment Γ ` e �A.

Lemma 7.2 (completeness). If Γ ` e : A, then Γ ` e �A.

Proof. By rule induction on the judgment Γ ` e : A

Theorem 7.3. Γ ` e : A if and only if Γ ` e �A.

Proof. Follows from Lemmas 7.1 and 7.2.

7.2 Bidirectional typechecking
In the simply typed λ-calculus, every variable in a λ-abstraction is annotated with its type (e.g., λx :A. e).
While it is always good to know the type of a variable for the purpose of typechecking, a typechecking
algorithm may not need the type annotation of every variable which sometimes reduces code readabil-
ity. As an example, consider the following expression which has type bool:

(λf :bool→bool. f true) λx :bool. x

The type of the first subexpression λf :bool→bool. f true is (bool→bool)→bool, so the whole expression
typechecks only if the second subexpression λx :bool. x has type bool→bool (according to the rule →E).
Then the type annotation for variable x becomes redundant because it must have type bool anyway if
λx :bool. x is to have type bool→bool. This example illustrates that not every variable in a well-typed
expression needs to be annotated with its type.
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A bidirectional typechecking algorithm takes a different approach by allowing λ-abstractions with
no type annotations (i.e., λx. e as in the untyped λ-calculus), but also requiring certain expressions to be
explicitly annotated with their types. Thus bidirectional typechecking assumes a modified definition of
abstract syntax:

expression e ::= x | λx. e | e e | true | false | if e then e else e | (e : A)

A λ-abstraction λx. e does not annotate its formal argument with a type. (It is okay to permit λx :A. e
in addition to λx. e, but it does not expand the set of well-typed expressions under bidirectional type-
checking.) (e : A) explicitly annotates expression e with type A, and plays the role of variable x bound
in a λ-abstraction λx :A. e. Specifically it is (e : A) that feeds type information into a bidirectional type-
checking algorithm whereas it is λx :A. e that feeds type information into an ordinary typechecking
algorithm.

A bidirectional typechecking algorithm proceeds by alternating between an analysis phase, in which
it “analyzes” a given expression to verify that it indeed has a given type, and a synthesis phase, in
which it “synthesizes” the type of a given expression. We use two new judgments for the two phases of
bidirectional typechecking:

• Γ ` e ⇑ A means that we are checking expression e against type A under typing context Γ. That
is, Γ, e, and A are all given and we are checking if Γ ` e : A holds. Γ ` e ⇑ A corresponds to a
declarative interpretation of the typing judgment Γ ` e : A.

• Γ ` e ⇓ A means that we have synthesized type A from expression e under typing context Γ. That
is, only Γ and e are given and we have synthesized type A such that Γ ` e : A holds. Γ ` e ⇓ A
corresponds to an algorithmic interpretation of the typing judgment Γ ` e : A, and is stronger (i.e.,
more difficult to prove) than Γ ` e ⇑ A.

Now we have to decide which of Γ ` e ⇑ A and Γ ` e ⇓ A is applicable to a given expression e. Let
us consider a λ-abstraction λx. e first:

· · ·
Γ ` λx. e ⇓ A→B

→Ib or
· · ·

Γ ` λx. e ⇑ A→B
→Ib

Intuitively we cannot hope to synthesize type A→B from λx. e because the type of x is unknown in
general. For example, e may not use x at all, in which case it is literally impossible to infer the type of
x! Therefore we have to check λx. e against a type A→B to be given in advance:

Γ, x : A ` e ⇑ B

Γ ` λx. e ⇑ A→B
→Ib

Next let us consider an application e e′:
· · ·

Γ ` e e′ ⇓ B
→Eb or

· · ·
Γ ` e e′ ⇑ B

→Eb

Intuitively it is pointless to check e e′ against type B, since we have to synthesize type A→B for e
anyway. With type A→B for e, then, we automatically synthesize type B for e e′ as well, and the
problem of checking e e′ against type B becomes obsolete because it is easier than the problem of
synthesizing type B for e e′. Therefore we synthesize type B from e e′ by first synthesizing type A→B
from e and then verifying that e′ has type A:

Γ ` e ⇓ A→B Γ ` e′ ⇑ A

Γ ` e e′ ⇓ B
→Eb

For a variable, we can always synthesize its type by looking up a typing context:

x : A ∈ Γ
Γ ` x ⇓ A

Varb

Then how can we relate the two judgments Γ ` e ⇑ A and Γ ` e ⇓ A? Since Γ ` e ⇓ A is stronger than
Γ ` e ⇑ A, the following rule makes sense regardless of the form of expression e:

Γ ` e ⇓ A

Γ ` e ⇑ A
⇓⇑b
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The opposite direction does not make sense, but by annotating e with its intended type A, we can relate
the two judgments in the opposite direction:

Γ ` e ⇑ A

Γ ` (e : A) ⇓ A
⇑⇓b

The rule ⇑⇓b says that if expression e is annotated with type A, we may take A as the type of e without
having to guess, or “synthesize,” it, but only after verifying that e indeed has type A.

Now we can classify expressions into two kinds: intro(duction) expressions I and elim(ination) ex-
pressions E. We always check an intro expression I against some type A; hence Γ ` I ⇑ A makes sense,
but Γ ` I ⇓ A is not allowed. For an elim expression E, we can either try to synthesize its type A or
check it against some type A; hence both Γ ` E ⇓ A and Γ ` E ⇑ A make sense. The mutual definition
of intro and elim expressions is specified by the rules for bidirectional typechecking:

intro expression I ::= λx. I | E
elim expression E ::= x | E I | (I : A)

As you might have guessed, an expression is an intro expression if its corresponding typing rule is
an introduction rule. For example, λx. e is an intro expression because its corresponding typing rule is
the → introduction rule →I. Likewise an expression is an elim expression if its corresponding typing
rule is an elimination rule. For example, e e′ is an elim expression because its corresponding typing
rule is the → elimination rule →E, although it requires further consideration to see why e is an elim
expression and e′ is an intro expression.

For your reference, we give the complete definition of intro and elim expressions by including re-
maining constructs of the simply typed λ-calculus. As in λ-abstractions, we do not need type annota-
tions in left injections, right injections, abort expression, and the fixed point construct. We use a case
expression as an intro expression instead of an elim expression. We use an abort expression as an intro
expression because it is a special case of a case expression. Figure 7.1 shows the definition of intro and
elim expressions as well as all typing rules for bidirectional typechecking.

7.3 Exercises
Exercise 7.4. Give algorithmic typing rules for the extended simply typed λ-calculus in Figure 5.1.

Exercise 7.5. Give typing rules for true, false, and if e then e1 else e2 under bidirectional typechecking.

Exercise 7.6. (λx. x) () has type unit. This expression, however, does not typecheck against unit under
bidirectional typechecking. Write as much of a derivation · ` (λx. x) () ⇑ unit as you can, and indicate
with an asterisk (*) where the derivation gets stuck.

Exercise 7.7. Annotate some intro expression in (λx. x) () with a type (i.e., convert an intro expression I
into an elim expression (I : A)), and typecheck the whole expression using bidirectional typechecking.
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intro expression I ::= λx. I →Ib
| (I, I) ×Ib
| inl I +ILb

| inr I +IRb

| case E of inl x. I | inr x. I +Eb

| () Unitb
| abort E Abortb
| fix x. I Fixb

| E ⇓⇑b

elim expression E ::= x Varb
| E I →Eb

| fst E ×E1b

| snd E ×E2b

| (I : A) ⇑⇓b

x : A ∈ Γ
Γ ` x ⇓ A

Varb
Γ, x : A ` I ⇑ B

Γ ` λx. I ⇑ A→B
→Ib

Γ ` E ⇓ A→B Γ ` I ⇑ A

Γ ` E I ⇓ B
→Eb

Γ ` I1 ⇑ A1 Γ ` I2 ⇑ A2

Γ ` (I1, I2) ⇑ A1 ×A2

×Ib
Γ ` E ⇓ A1 ×A2

Γ ` fst E ⇓ A1

×E1b

Γ ` E ⇓ A1 ×A2

Γ ` snd E ⇓ A2

×E2b

Γ ` I ⇑ A1

Γ ` inl I ⇑ A1+A2

+ILb

Γ ` I ⇑ A2

Γ ` inr I ⇑ A1+A2

+IRb

Γ ` E ⇓ A1+A2 Γ, x1 : A1 ` I1 ⇑ C Γ, x2 : A2 ` I2 ⇑ C

Γ ` case E of inl x1. I1 | inr x2. I2 ⇑ C
+Eb

Γ ` () ⇑ unit
Unitb

Γ ` E ⇓ void

Γ ` abort E ⇑ C
Abortb

Γ, x : A ` I ⇑ A

Γ ` fix x. I ⇑ A
Fixb

Γ ` E ⇓ A

Γ ` E ⇑ A
⇓⇑b

Γ ` I ⇑ A

Γ ` (I : A) ⇓ A
⇑⇓b

Figure 7.1: Definition of intro and elim expressions with their typing rules
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Chapter 8

Evaluation contexts

This chapter presents an alternative formulation of the operational semantics for the simply typed λ-
calculus. Compared with the operational semantics in Chapter 4, the new formulation is less complex,
yet better reflects reductions of expressions in a concrete implementation. The new formulation is a
basis for an abstract machine for the simply typed λ-calculus, which, like the Java virtual machine, is
capable of running a program independently of the underlying hardware platform.

8.1 Evaluation contexts

Consider the simply typed λ-calculus given in Chapter 4:

type A ::= P | A→A
base type P ::= bool

expression e ::= x | λx :A. e | e e | true | false | if e then e else e
value v ::= λx :A. e | true | false

A reduction judgment e 7→ e′ for the call-by-value strategy is defined inductively by the following
reduction rules:

e1 7→ e′1
e1 e2 7→ e′1 e2

Lam
e2 7→ e′2

(λx :A. e) e2 7→ (λx :A. e) e′2
Arg

(λx :A. e) v 7→ [v/x]e
App

e 7→ e′

if e then e1 else e2 7→ if e′ then e1 else e2
If

if true then e1 else e2 7→ e1
If true if false then e1 else e2 7→ e2

If false

Since only the rules App, If true, and If false have no premise, every derivation tree for a reduction judg-
ment e 7→ e′ must end with an application of one of these rules:

(λx :A. e′′) v 7→ [v/x]e′′
App

...
e 7→ e′

if true then e1 else e2 7→ e1
If true

...
e 7→ e′

if false then e1 else e2 7→ e2
If false

...
e 7→ e′
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Thus the reduction of an expression e amounts to locating an appropriate subexpression (λx :A. e′′) v,
if true then e1 else e2, or if false then e1 else e2 of e and applying a corresponding reduction rule.

As an example, let us reduce the following expression:

e = (if (λx :A. e′′) v then e1 else e2) e
′

The reduction of e cannot proceed without first reducing the underlined subexpression (λx :A. e′′) v by
the rule App, as shown in the following derivation tree:

(λx :A. e′′) v 7→ [v/x]e′′
App

if (λx :A. e′′) v then e1 else e2 7→ · · ·
If

(if (λx :A. e′′) v then e1 else e2) e
′ 7→ · · ·

Lam

Then we may think of e as consisting of two parts: a subexpression, or a redex, (λx :A. e′′) v which
actually reduces to another expression [v/x]e′′ by the rule App, and the rest which remains intact during
the reduction. Note that the second part is not an expression because it is obtained by erasing the redex
from e. We write the second part as (if 2 then e1 else e2) e

′ where the hole 2 indicates the position of the
redex.

We refer to an expression with a hole in it, such as (if 2 then e1 else e2) e
′, as an evaluation context.

The hole indicates the position of the redex (to be reduced by one of the rules App, If true, and If false) for
the next step. Note that we may not use the rule Lam , Arg , or If to reduce the redex, since none of these
rules reduces the whole redex in a single step.

Since the hole in an evaluation context indicates the position of a redex, every expression is decom-
posed into a unique evaluation context and a unique redex under a particular reduction strategy. For the
same reason, not every expression with a hole in it is a valid evaluation context. For example, (e1 e2) 2

is not a valid evaluation context under the call-by-value strategy because given an expression (e1 e2) e
′,

we have to reduce e1 e2 before we reduce e′. These two observations show that a particular reduction
strategy specifies a unique inductive definition of evaluation contexts. The call-by-value strategy results
in the following definition:

evaluation context κ ::= 2 | κ e | (λx :A. e) κ | if κ then e else e

κ e is an evaluation context for e′ e where e′ needs to be further reduced; (λx :A. e) κ is an evaluation
context for (λx :A. e) e′ where e′ needs to be further reduced. Similarly if κ then e1 else e2 is an evaluation
context for if e′ then e1 else e2 where e′ needs to be further reduced.

Let us write κJeK for an expression obtained by filling the hole in κ with e. Here are a few examples:

2J(λx :A. e′′) vK = (λx :A. e′′) v
(if 2 then e1 else e2)J(λx :A. e′′) vK = (if (λx :A. e′′) v then e1 else e2)

((if 2 then e1 else e2) e
′)J(λx :A. e′′) vK = (if (λx :A. e′′) v then e1 else e2) e

′

A formal definition of κJeK is given as follows:

2JeK = e
(κ e′)JeK = κJeK e′

((λx :A. e′) κ)JeK = (λx :A. e′) κJeK
(if κ then e1 else e2)JeK = if κJeK then e1 else e2

Now consider an expression which is known to reduce to another expression. We can write it as
κJeK for a unique evaluation context κ and a unique redex e. Since κJeK is known to reduce to another
expression, e must also reduce to another expression e′. We write e 7→β e

′ to indicate that the reduction
of e to e′ uses the rule App, If true, or If false. Then the following reduction rule alone is enough to
completely specify a reduction strategy because the order of reduction is implicitly determined by the
definition of evaluation contexts:

e 7→β e
′

κJeK 7→ κJe′K
Redβ
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evaluation context κ ::= 2 | κ e | (λx :A. e) κ | if κ then e else e

(λx :A. e) v 7→β [v/x]e
if true then e1 else e2 7→β e1
if false then e1 else e2 7→β e2

e 7→β e
′

κJeK 7→ κJe′K
Redβ

Figure 8.1: Call-by-value operational semantics using evaluation contexts

evaluation context κ ::= 2 | κ e | if κ then e else e

(λx :A. e) e′ 7→β [e′/x]e
if true then e1 else e2 7→β e1
if false then e1 else e2 7→β e2

e 7→β e
′

κJeK 7→ κJe′K
Redβ

Figure 8.2: Call-by-name operational semantics using evaluation contexts

The reduction relation 7→β is defined by the following equations:

(λx :A. e) v 7→β [v/x]e
if true then e1 else e2 7→β e1
if false then e1 else e2 7→β e2

Figure 8.1 summarizes how to use evaluation contexts to specify the call-by-value operational se-
mantics. An example of a reduction sequence is shown below. In each step, we underline the redex and
show how to decompose a given expression into a unique evaluation context and a unique redex.

(if (λx :bool. x) true then λy :bool. y else λz :bool. z) true

= ((if 2 then λy :bool. y else λz :bool. z) true)J(λx :bool. x) trueK
7→ ((if 2 then λy :bool. y else λz :bool. z) true)JtrueK Redβ

= (if true then λy :bool. y else λz :bool. z) true

= (2 true)Jif true then λy :bool. y else λz :bool. zK
7→ (2 true)Jλy :bool. yK Redβ

= (λy :bool. y) true

= 2J(λy :bool. y) trueK
7→ 2JtrueK Redβ

= true

In order to obtain the call-by-name operational semantics, we only have to change the inductive
definition of evaluation contexts and the reduction relation 7→β , as shown in Figure 8.2. With a proper
understanding of evaluation contexts, it should also be straightforward to incorporate those reduction
rules in Chapter 5 into the definition of evaluation contexts and the reduction relation 7→β . The reader
is encouraged to try to augment the definition of evaluation contexts and the reduction relation 7→β .
See Figures 8.3 and 8.4 for the result.

Exercise 8.1. Give a definition of evaluation contexts corresponding to the weird reduction strategy
specified in Exercise 3.10.

8.2 Type safety
As usual, type safety consists of progress and type preservation:
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evaluation context κ ::= · · · | (κ, e) | (v, κ) | fst κ | snd κ |
inlA κ | inrA κ | case κ of inl x. e | inr x. e

fst (v1, v2) 7→β v1
snd (v1, v2) 7→β v2

case inlA v of inl x1. e1 | inr x2. e2 7→β [v/x1]e1
case inrA v of inl x1. e1 | inr x2. e2 7→β [v/x2]e2

fix x :A. e 7→β [fix x :A. e/x]e

Figure 8.3: Extension for the eager reduction strategy

evaluation context κ ::= · · · | fst κ | snd κ | case κ of inl x. e | inr x. e

fst (e1, e2) 7→β e1
snd (e1, e2) 7→β e2

case inlA e of inl x1. e1 | inr x2. e2 7→β [e/x1]e1
case inrA e of inl x1. e1 | inr x2. e2 7→β [e/x2]e2

fix x :A. e 7→β [fix x :A. e/x]e

Figure 8.4: Extension for the lazy reduction strategy

Theorem 8.2 (Progress). If · ` e : A for some type A, then either e is a value or there exist e′ such that e 7→ e′.

Theorem 8.3 (Type preservation). If Γ ` e : A and e 7→ e′, then Γ ` e′ : A.

Since the rule Redβ uses not only a subexpression of a given expression but also an evaluation
context for it, the proof of type safety requires a new typing judgments for evaluation contexts. We
write Γ ` κ : A ⇒ C to mean that given an expression of type A, the evaluation context κ produces an
expression of type C:

Γ ` κ : A⇒ C ⇔ if Γ ` e : A, then Γ ` κJeK : C

We write κ : A⇒ C for · ` κ : A⇒ C.
The following inference rules are all admissible under the above definition of Γ ` κ : A ⇒ C. That

is, we can prove that the premises imply the conclusion in each inference rule.

Γ ` 2 : A⇒ A
2ctx

Γ ` κ : A⇒ B→C Γ ` e : B
Γ ` κ e : A⇒ C

Lamctx

Γ ` λx :B. e : B→C Γ ` κ : A⇒ B
Γ ` (λx :B. e) κ : A⇒ C

Argctx

Γ ` κ : A⇒ bool Γ ` e1 : C Γ ` e2 : C

Γ ` if κ then e1 else e2 : A ⇒ C
Ifctx

Proposition 8.4. The rules 2ctx, Lamctx, Argctx, and Ifctx are admissible.

Proof. By using the definition of Γ ` κ : A⇒ C. We show the case for the rule Lamctx.

Case
Γ ` κ : A⇒ B→C Γ ` e : B

Γ ` κ e : A⇒ C
Lamctx

Γ ` κ : A⇒ B→C and Γ ` e : B assumptions
Γ ` e′ : A assumption
Γ ` κJe′K : B→C from Γ ` κ : A⇒ B→C and Γ ` e′ : A
Γ ` κJe′K e : C by the rule →E

Γ ` (κ e)Je′K : C from κJe′K e = (κ e)Je′K
Γ ` κ e : A⇒ C from Γ ` e′ : A and Γ ` (κ e)Je′K : C

The proof of Theorem 8.2 is similar to the proof of Theorem 4.3. The proof of Theorem 8.3 uses the
following lemma whose proof uses Lemma 4.8:

Lemma 8.5. If Γ ` κJeK : C , then Γ ` e : A and Γ ` κ : A⇒ C for some type A.
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Proof. By structural induction on κ. We show the case for κ = κ′ e′.

Case κ = κ′ e′

Γ ` κJeK : C assumption
Γ ` (κ′JeK) e′ : C κJeK = (κ′JeK) e′

Γ ` κ′JeK : B→C and Γ ` e′ : B for some type B by Lemma 4.8
Γ ` e : A and Γ ` κ′ : A⇒ B→C for some type A by induction hypothesis on κ′
Γ ` κ′ e′ : A⇒ C by the rule Lamctx

Γ ` κ : A⇒ C

8.3 Abstract machine C

The concept of evaluation context leads to a concise formulation of the operational semantics, but it is
not suitable for an actual implementation of the simply typed λ-calculus. The main reason is that the
rule Redβ tacitly assumes an automatic decomposition of a given expression into a unique evaluation
context and a unique redex, but it may in fact require an explicit analysis of the given expression in
several steps. For example, in order to rewrite

e = (if (λx :A. e′′) v then e1 else e2) e
′

as ((if 2 then e1 else e2) e
′)J(λx :A. e′′) vK, we would analyze e in several steps:

e = 2J(if (λx :A. e′′) v then e1 else e2) e
′K

= (2 e′)Jif (λx :A. e′′) v then e1 else e2K
= ((if 2 then e1 else e2) e

′)J(λx :A. e′′) vK

The abstract machine C is another formulation of the operational semantics in which such an analysis
is explicit.

Roughly speaking, the abstract machine C replaces an evaluation context by a stack of frames such
that each frame corresponds to a specific step in the analysis of a given expression:

frame φ ::= 2 e | (λx :A. e) 2 | if 2 then e1 else e2
stack σ ::= 2 | σ;φ

Frames are special cases of evaluation contexts which are not defined inductively. Thus we may write
φJeK for an expression obtained by filling the hole in φ with e. A stack of frames also represents an
evaluation context in that given an expression, it determines a unique expression. To be specific, a stack
σ and an expression e determine a unique expression σJeK defined inductively as follows:

2JeK = e
(σ;φ)JeK = σJφJeKK

If we write σ as 2;φ1;φ2; · · · ;φn for n ≥ 0, σJeK may be written as

2Jφ1Jφ2J· · · JφnJeKK · · ·KKK.

Now, for example, an implicit analysis of e = (if (λx :A. e′′) v then e1 else e2) e
′ shown above can be

made explicit by using a stack of frames:

e = (2; 2 e′; if 2 then e1 else e2)J(λx :A. e′′) vK

Note that the top frame of a stack σ;φ is φ and that the bottom of a stack is always 2.
A state of the abstract machine C is specified by a stack σ and an expression e, in which case the

machine can be thought of as reducing an expression σJeK. In addition, the state includes a flag to
indicate whether e needs to be further analyzed or has already been reduced to a value. Thus we use
the following definition of states:

state s ::= σ I e | σ J v
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• σ I e means that the machine is currently reducing σJeK, but has yet to analyze e.

• σ J v means that the machine is currently reducing σJvK and has already analyzed v. That is, it is
returning v to the top frame of σ.

Thus, if an expression e evaluates to a value v, a state σ I e will eventually lead to another state σ J v.
As a special case, the initial state of the machine evaluating e is always 2 I e and the final state 2 J v
if e evaluates to v.

A state transition in the abstract machine C is specified by a reduction judgment s 7→C s
′; we write

7→∗
C for the reflexive and transitive closure of 7→C . The guiding principle for state transitions is to

maintain the invariant that e 7→∗ v holds if and only if σ I e 7→∗
C σ J v holds for any stack σ. The rules

for the reduction judgment s 7→C s
′ are as follows:

σ I v 7→C σ J v ValC σ I e1 e2 7→C σ; 2 e2 I e1
LamC

σ; 2 e2 J λx :A. e 7→C σ; (λx :A. e) 2 I e2
ArgC σ; (λx :A. e) 2 J v 7→C σ I [v/x]e

AppC

σ I if e then e1 else e2 7→C σ; if 2 then e1 else e2 I e
If C

σ; if 2 then e1 else e2 J true 7→C σ I e1
If trueC σ; if 2 then e1 else e2 J false 7→C σ I e2

If falseC

An example of a reduction sequence is shown below. Note that it begins with a state 2 I e and ends
with a state 2 J v.

2 I (if (λx :bool. x) true then λy :bool. y else λz :bool. z) true LamC

7→C 2; 2 true I if (λx :bool. x) true then λy :bool. y else λz :bool. z If C

7→C 2; 2 true; if 2 then λy :bool. y else λz :bool. z I (λx :bool. x) true LamC

7→C 2; 2 true; if 2 then λy :bool. y else λz :bool. z; 2 true I λx :bool. x ValC
7→C 2; 2 true; if 2 then λy :bool. y else λz :bool. z; 2 true J λx :bool. x ArgC

7→C 2; 2 true; if 2 then λy :bool. y else λz :bool. z; (λx :bool. x) 2 I true ValC
7→C 2; 2 true; if 2 then λy :bool. y else λz :bool. z; (λx :bool. x) 2 J true AppC

7→C 2; 2 true; if 2 then λy :bool. y else λz :bool. z I true ValC
7→C 2; 2 true; if 2 then λy :bool. y else λz :bool. z J true If trueC

7→C 2; 2 true I λy :bool. y ValC
7→C 2; 2 true J λy :bool. y ArgC

7→C 2; (λy :bool. y) 2 I true ValC
7→C 2; (λy :bool. y) 2 J true AppC

7→C 2 I true ValC
7→C 2 J true

8.4 Correctness of the abstract machine C

This section presents a proof of the correctness of the abstract machine C as stated in the following
theorem:

Theorem 8.6. e 7→∗ v if and only if 2 I e 7→∗
C 2 J v.

A more general version of the theorem allows any stack σ in place of 2, but we do not prove it here.
For the sake of simplicity, we also do not consider expressions of type bool altogether.

It is a good and challenging exercise to prove the theorem. The main difficulty lies in finding several
lemmas necessary for proving the theorem, not in constructing their proofs. The reader is encouraged
to guess these lemmas without having to write their proofs.

The proof uses a generalization of κJ·K and σJ·K over evaluation contexts:

2Jκ′K = κ′

(κ e)Jκ′K = κJκ′K e
((λx :A. e) κ)Jκ′K = (λx :A. e) κJκ′K

2JκK = κ
(σ;φ)JκK = σJφJκKK
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Note that κJκ′K and σJκK are evaluation contexts.

Proposition 8.7. κJκ′JeKK = κJκ′KJeK.

Proof. By structural induction on κ. We show two cases.

Case κ = 2:
2Jκ′JeKK = κ′JeK = 2Jκ′KJeK

Case κ = κ′′ e′′:
(κ′′ e′′)Jκ′JeKK = κ′′Jκ′JeKK e′′ = κ′′Jκ′KJeK e′′ = (κ′′Jκ′K e′′)JeK = (κ′′ e′′)Jκ′KJeK

Proposition 8.8. σJκJeKK = σJκKJeK.

Proof. By structural induction on σ. The second case uses Proposition 8.7.

Case σ = 2:
2JκJeKK = κJeK = 2JκKJeK.

Case σ = σ′;φ:
(σ′;φ)JκJeKK = σ′JφJκJeKKK = σ′JφJκKJeKK = σ′JφJκKKJeK = (σ′;φ)JκKJeK.

Lemma 8.9. For σ and κ, there exists σ′ such that σ I κJeK 7→∗
C σ

′
I e and σJκK = σ′J2K for any expression

e.

Proof. By structural induction on κ. We show two cases.

Case κ = 2:
We let σ′ = σ.

Case κ = κ′ e′:
σ I (κ′ e′)JeK = σ I κ′JeK e′ 7→C σ; 2 e′ I κ′JeK by the rule LamC

σ; 2 e′ I κ′JeK 7→∗
C σ

′
I e and (σ; 2 e′)Jκ′K = σ′J2K by induction hypothesis

σJκK = σJκ′ e′K = σJ(2 e′)Jκ′KK = (σ; 2 e′)Jκ′K = σ′J2K

Lemma 8.10. Suppose σJeK = κJf vK where f is a λ-abstraction. Then one of the following cases holds:
(1) σ I e 7→∗

C σ
′
I κ′Jf vK and σ′Jκ′K = κ

(2) σ = σ′; 2 v and e = f and σ′J2K = κ
(3) σ = σ′; f 2 and e = v and σ′J2K = κ

Proof. By structural induction on σ. We show two cases.

Case σ = 2:
σJeK = e = κJf vK assumption
σ I e = 2 I κJf vK
(1) σ I e 7→∗

C 2 I κJf vK and 2JκK = κ

Case σ = σ′; 2 e′:
σJeK = (σ′; 2 e′)JeK = σ′J(2 e′)JeKK = σ′Je e′K = κJf vK

Subcase (1) σ′
I e e′ 7→∗

C σ
′′

I κ′Jf vK and σ′′Jκ′K = κ: by induction hypothesis on σ′

σ′
I e e′ 7→C σ

′; 2 e′ I e 7→∗
C σ

′′
I κ′Jf vK assumption

(1) σ I e 7→∗
C σ

′′
I κ′Jf vK and σ′′Jκ′K = κ

σ′ = σ′′ and e e′ = κ′Jf vK, and κ′ = 2 assumption
e = f and e′ = v
(2) σ = σ′; 2 v and e = f and σ′J2K = σ′′Jκ′K = κ
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σ′ = σ′′ and e e′ = κ′Jf vK, and κ′ = κ′′ e′ assumption
e = κ′′Jf vK
(1) σ I e 7→∗

C σ I κ′′Jf vK and
σJκ′′K = (σ′′; 2 e′)Jκ′′K = σ′′Jκ′′ e′K = σ′′Jκ′K = κ

σ′ = σ′′ and e e′ = κ′Jf vK, and κ′ = e κ′′ assumption
e is a λ-abstraction and e′ = κ′′Jf vK
(1) σ I e = σ′; 2 e′ I e 7→Cσ

′; 2 e′ J e 7→Cσ
′; e 2 I e′ = σ′; e 2 I κ′′Jf vK

and (σ′; e 2)Jκ′′K = σ′Je κ′′K = σ′′Jκ′K = κ

Subcases (2) and (3) impossible e e′ 6= f and e e′ 6= v

Lemma 8.11. Suppose σJeK = κJf vK where f is a λ-abstraction and f v 7→β e
′. Then σ I e 7→∗

C σ
∗

I e′ and
σ∗Je′K = κJe′K.

Proof. By Lemma 8.10, we need to consider the following three cases:

(1) σ I e 7→∗
C σ

′
I κ′Jf vK and σ′Jκ′K = κ

σ I e 7→∗
C σ′

I κ′Jf vK
7→∗

C σ′′
I f v where σ′Jκ′K = σ′′J2K by Lemma 8.9

7→C σ′′; 2 v I f
7→C σ′′; 2 v J f
7→C σ′′; f 2 I v
7→C σ′′; f 2 J v
7→C σ′′

I e′

σ′′Je′K = σ′′J2Je′KK = σ′′J2KJe′K = σ′Jκ′KJe′K = κJe′K by Proposition 8.8
We let σ∗ = σ′′.

(2) σ = σ′; 2 v and e = f and σ′J2K = κ
σ I e = σ′; 2 v I f

7→∗
C σ′

I e′

σ′Je′K = σ′J2Je′KK = σ′J2KJe′K = κJe′K by Proposition 8.8
We let σ∗ = σ′.

(3) σ = σ′; f 2 and e = v and σ′J2K = κ
σ I e = σ′; f 2 I v

7→∗
C σ′

I e′

σ′Je′K = σ′J2Je′KK = σ′J2KJe′K = κJe′K by Proposition 8.8
We let σ∗ = σ′.

Corollary 8.12. Suppose e1 7→ e2 and σJeK = e1. Then there exist σ′ and e′ such that σ I e 7→∗
C σ

′
I e′ and

σ′Je′K = e2.

We leave it to the reader to prove all results given below.

Proposition 8.13. Suppose e 7→∗ v and σJe′K = e. Then σ I e′ 7→∗
C 2 J v.

Corollary 8.14. If e 7→∗ v, then 2 I e 7→∗
C 2 J v.

Proposition 8.15.
If σ I e 7→C σ

′
I e′, then σJeK 7→∗ σ′Je′K.

If σ I e 7→C σ
′
J v′, then σJeK 7→∗ σ′Jv′K.

Corollary 8.16.
If σ I e 7→∗

C σ
′
I e′, then σJeK 7→∗ σ′Je′K.

If σ I e 7→∗
C σ

′
J v′, then σJeK 7→∗ σ′Jv′K.

Corollary 8.17. If 2 I e 7→∗
C 2 J v, then e 7→∗ v.

Corollaries 8.14 and 8.17 prove Theorem 8.6.
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8.5 Safety of the abstract machine C

The safety of the abstract machine C is proven independently of its correctness. We use two judgments
to describe the state of C with three inference rules given below:

• s okay means that s is an “okay” state. That is, C is ready to analyze a given expression.

• s stop means that s is a “stop” state. That is, C has finished reducing a given expression.

σJ2K : A ⇒ C · ` e : A

σ I e okay
Okay

I

σJ2K : A ⇒ C · ` v : A

σ J v okay
Okay

J
· ` v : A

2 J v stop
Stop

J

The first clause in the following theorem may be thought of as the progress property of the abstract
machine C; the second clause may be thought of as the “state” preservation property.

Theorem 8.18 (Safety of the abstract machine C).
If s okay, then either s stop or there exists s′ such that s 7→C s

′.
If s okay and s 7→C s

′, then s′ okay.

8.6 Exercises
Exercise 8.19. Prove Theorems 8.2 and 8.3.

Exercise 8.20. Consider the simply typed λ-calculus extended with product types, sum types, and the
fixed point construct.

expression e ::= x | λx :A. e | e e | (e, e) | fst e | snd e | () |
inlA e | inrA e | case e of inl x. e | inr x. e | fix x :A. e |
true | false | if e then e else e

value v ::= λx :A. e | (v, v) | () | inlA v | inrA v | true | false

Assuming the call-by-value strategy, extend the definition of frames and give additional rules for the
reduction judgment s 7→C s

′ for the abstract machine C. See Figure 8.5 for an answer.

Exercise 8.21. Prove Theorem 8.18.
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frame φ ::= 2 e | v 2 | (2, e) | (v,2) | fst 2 | snd 2 |
inlA 2 | inrA 2 | case 2 of inl x. e | inr x. e | if 2 then e1 else e2

σ I (e1, e2) 7→C σ; (2, e2) I e1
PairC

σ; (2, e2) J v1 7→C σ; (v1,2) I e2
Pair ′

C

σ; (v1,2) J v2 7→C σ J (v1, v2)
Pair ′′

C

σ I fst e 7→C σ; fst 2 I e
FstC σ; fst 2 J (v1, v2) 7→C σ J v1

Fst ′C

σ I snd e 7→C σ; snd 2 I e
SndC σ; snd 2 J (v1, v2) 7→C σ J v2

Snd ′
C

σ I inlA e 7→C σ; inlA 2 I e
InlC σ; inlA 2 J v 7→C σ J inlA v

Inl ′C

σ I inrA e 7→C σ; inrA 2 I e
InrC σ; inrA 2 J v 7→C σ J inrA v

Inr ′
C

σ I case e of inl x1. e1 | inr x2. e2 7→C σ; case 2 of inl x1. e1 | inr x2. e2 I e
CaseC

σ; case 2 of inl x1. e1 | inr x2. e2 J inlA v 7→C σ I [v/x1]e1
Case ′

C

σ; case 2 of inl x1. e1 | inr x2. e2 J inrA v 7→C σ I [v/x2]e2
Case ′′

C

σ I fix x :A. e 7→C σ I [fix x :A. e/x]e
FixC

Figure 8.5: Abstract machine C for product types, sum types, and the fixed point construct
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Chapter 9

Environments and Closures

The operational semantics of the simply typed (or untyped) λ-calculus discussed so far hinges on sub-
stitutions in reducing such expressions as applications, case expressions, and the fixed point construct.
Since the definition of a substitution [e′/x]e analyzes the structure of e to find all occurrences of x, a
naive implementation of substitutions can be extremely inefficient in terms of time, especially because
of the potential size of e. Even worse, x may not appear at all in e, in which case all the work put into
the analysis of e is wasted.

This chapter presents another form of operational semantics, called environment semantics, which
overcomes the inefficiency of the naive implementation of substitutions. The environment semantics
does not entirely eliminate the need for substitutions, but it performs substitutions only if necessary by
postponing them as much as possible. The development of the environment semantics also leads to the
introduction of another important concept called closures, which are compact representations of closed
λ-abstractions (i.e., those containing no free variables) generated during evaluations.

Before presenting the environment semantics, we develop a new form of judgment for “evaluating”
expressions (as opposed to “reducing” expressions). In comparison with the reduction judgment, the
new judgment lends itself better to explaining the key idea behind the environment semantics.

9.1 Evaluation judgment
As in Chapter 8, we consider the fragment of the simply typed λ-calculus consisting of the boolean type
and function types:

type A ::= P | A→A
base type P ::= bool

expression e ::= x | λx :A. e | e e | true | false | if e then e else e
value v ::= λx :A. e | true | false

In a certain sense, a reduction judgment e 7→ e′ takes a single small step toward completing the
evaluation of e, since the evaluation of e to a value requires a sequence of such steps in general. For this
reason, the operational semantics based on the reduction judgment e 7→ e′ is often called a small-step
semantics.

An opposite approach is to take a single big step with which we immediately finish evaluating a
given expression. To realize this approach, we introduce an evaluation judgment of the form e ↪→ v:

e ↪→ v ⇔ e evaluates to v

The intuition behind the evaluation judgment is that e ↪→ v conveys the same meaning as e 7→∗ v (which
we will actually prove in Theorem 9.2). An operational semantics based on the evaluation judgment is
often called a big-step semantics.

We refer to an inference rule deducing an evaluation judgment as an evaluation rule. Unlike a re-
duction judgment which is never applied to a value (i.e., no reduction judgment of the form v 7→ e),
an evaluation judgment v ↪→ v is always valid because v 7→∗ v holds for any value v. The three reduc-
tion rules Lam, Arg , and App for applications (under the call-by-value strategy) are now merged into a
single evaluation rule with three premises:
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λx :A. e ↪→ λx :A. e
Lam

e1 ↪→ λx :A. e e2 ↪→ v2 [v2/x]e ↪→ v
e1 e2 ↪→ v App

true ↪→ true True false ↪→ false
False

e ↪→ true e1 ↪→ v

if e then e1 else e2 ↪→ v
If true

e ↪→ false e2 ↪→ v

if e then e1 else e2 ↪→ v
If false

Note that there is only one rule for each form of expression. In other words, the evaluation rules are
syntax-directed. Thus we may invert an evaluation rule so that its conclusion justifies the use of its
premises. (See Lemma 4.8 for a similar example.) For example, e1 e2 ↪→ v asserts the existence of λx :A. e
and v2 such that e1 ↪→ λx :A. e, e2 ↪→ v2, and [v2/x]e ↪→ v.

The following derivation (with evaluation rule names omitted) shows how to evaluate
(λx :bool. x) ((λy :bool. y) true) to true in a single “big” step:

λx :bool. x ↪→ λx :bool. x

λy :bool. y ↪→ λy :bool. y true ↪→ true [true/y]y ↪→ true

(λy :bool. y) true ↪→ true [true/x]x ↪→ true

(λx :bool. x) ((λy :bool. y) true) ↪→ true

Exercise 9.1. For the fragment of the simply typed λ-calculus consisting of variables, λ-abstractions,
and applications, give rules for the evaluation judgment e ↪→ v corresponding to the call-by-name re-
duction strategy. Also give rules for the weird reduction strategy specified in Exercise 3.10.

Theorem 9.2 states the relationship between evaluation judgments and reduction judgments; the
proof consists of proofs of Propositions 9.3 and 9.4:

Theorem 9.2. e ↪→ v if and only if e 7→∗ v.

Proposition 9.3. If e ↪→ v, then e 7→∗ v.

Proposition 9.4. If e 7→∗ v, then e ↪→ v.

The proof of Proposition 9.3 proceeds by rule induction on the judgment e ↪→ v and uses Lemma 9.5.
The proof of Lemma 9.5 essentially uses mathematical induction on the length of the reduction sequence
e 7→∗ e′, but we recast the proof in terms of rule induction with the following inference rules (as in
Exercise 3.11):

e 7→∗ e
Refl

e 7→ e′′ e′′ 7→∗ e′

e 7→∗ e′
Trans

Lemma 9.5. Suppose e 7→∗ e′.
(1) e e′′ 7→∗ e′ e′′.
(2) (λx :A. e′′) e 7→∗ (λx :A. e′′) e′.
(3) if e then e1 else e2 7→∗ if e′ then e1 else e2.

Proof. By rule induction on the judgment e 7→∗ e′. We consider the clause (1). The other two clauses are
proven in a similar way.

Case e 7→∗ e
Refl where e′ = e:

e e′′ 7→∗ e′ e′′ from e e′′ = e′ e′′ and the rule Refl

Case
e 7→ et et 7→

∗ e′

e 7→∗ e′
Trans

et e
′′ 7→∗ e′ e′′ by induction hypothesis on et 7→

∗ e′

e e′′ 7→ et e
′′ from

e 7→ et

e e′′ 7→ et e
′′ Lam

e e′′ 7→∗ e′ e′′ from
e e′′ 7→ et e

′′ et e
′′ 7→∗ e′ e′′

e e′′ 7→∗ e′ e′′
Trans

Lemma 9.6. If e 7→∗ e′ and e′ 7→∗ e′′, then e 7→∗ e′′.
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Proof. See Exercise 3.11.

Proof of Proposition 9.3. By rule induction on the judgment e ↪→ v. If e = v, then e 7→∗ v holds by the rule
Refl . Hence we need to consider the cases for the rules App, If true, and If false. We show the case for the
rule App.

Case
e1 ↪→ λx :A. e′ e2 ↪→ v2 [v2/x]e

′ ↪→ v
e1 e2 ↪→ v App where e = e1 e2:

e1 7→∗ λx :A. e′ by induction hypothesis on e1 ↪→ λx :A. e′

e1 e2 7→∗ (λx :A. e′) e2 by Lemma 9.5
e2 7→∗ v2 by induction hypothesis on e2 ↪→ v2
(λx :A. e′) e2 7→∗ (λx :A. e′) v2 by Lemma 9.5
[v2/x]e

′ 7→∗ v by induction hypothesis on [v2/x]e
′ ↪→ v

(λx :A. e′) v2 7→∗ v (λx :A. e′) v2 7→ [v2/x]e
′

App
[v2/x]e

′ 7→∗ v

(λx :A. e′) v2 7→∗ v
Trans

e1 e2 7→∗ v from Lemma 9.6 and e1 e2 7→∗ (λx :A. e′) e2,
(λx :A. e′) e2 7→∗ (λx :A. e′) v2,

(λx :A. e′) v2 7→∗ v.

The proof of Proposition 9.4 proceeds by rule induction on the judgment e 7→∗ v, but is not as

straightforward as the proof of Proposition 9.3. Consider the case e 7→ e′ e′ 7→∗ v
e 7→∗ v

Trans . By induc-

tion hypothesis on e′ 7→∗ v, we obtain e′ ↪→ v. Then we need to prove e ↪→ v using e 7→ e′ and e′ ↪→ v,
which is not addressed by the proposition being proven. Thus we are led to prove the following lemma
before proving Proposition 9.4:

Lemma 9.7. If e 7→ e′ and e′ ↪→ v, then e ↪→ v.

Proof. By rule induction on the judgment e 7→ e′ (not on e′ ↪→ v). We show a representative case:

Case
e1 7→ e′1

e1 e2 7→ e′1 e2
Lam where e = e1 e2 and e′ = e′1 e2:

e′1 ↪→ λx :A. e′′1 e2 ↪→ v2 [v2/x]e
′′
1 ↪→ v

e′1 e2 ↪→ v
App by the syntax-directedness of the evaluation rules

e1 ↪→ λx :A. e′′1 by induction hypothesis on e1 7→ e′1 with e′1 ↪→ λx :A. e′′1
e1 ↪→ λx :A. e′′1 e2 ↪→ v2 [v2/x]e

′′
1 ↪→ v

e1 e2 ↪→ v App

Proof of Proposition 9.4. By rule induction on the judgment e 7→∗ v.

Case e 7→∗ e
Refl where e = v:

e ↪→ v by the rule Lam, True, or False

Case e 7→ e′ e′ 7→∗ v
e 7→∗ v

Trans

e′ ↪→ v by induction hypothesis on e′ 7→∗ v
e ↪→ v by Lemma 9.7 with e 7→ e′ and e′ ↪→ v

9.2 Environment semantics
The key idea behind the environment semantics is to postpone a substitution [v/x]e in the rule App by
storing a pair of v and x in an environment and then continuing to evaluate ewithout modifying it. When
we later encounter an occurrence of x within e and need to evaluate it, we look up the environment to
retrieve the actual value v for x. We use the following inductive definition of environment:

environment η ::= · | η, x ↪→ v
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· denotes an empty environment, and x ↪→ v means that variable x is to be replaced by value v. As in
the definition of typing context, we assume that variables in an environment are all distinct.

We use an environment evaluation judgment of the form η ` e ↪→ v:1

η ` e ↪→ v ⇔ e evaluates to v under environment η

As an example, let us evaluate [true/x]if x then e1 else e2 using the environment semantics. For the
sake of simplicity, we begin with an empty environment:

· ` [true/x]if x then e1 else e2 ↪→ ?

Instead of applying the substitution right away, we evaluate if x then e1 else e2 under an augmented
environment x ↪→ true (which is an abbreviation of ·, x ↪→ true):

· · ·
x ↪→ true ` if x then e1 else e2 ↪→ ?

To evaluate the conditional expression x, we look up the environment to retrieve its value:

x ↪→ true ` x ↪→ true · · ·
x ↪→ true ` if x then e1 else e2 ↪→ ?

Since the conditional expression evaluates to true, we take the if branch without changing the environ-
ment:

x ↪→ true ` x ↪→ true x ↪→ true ` e1 ↪→ ?

x ↪→ true ` if x then e1 else e2 ↪→ ?

If we let e1 = x and e2 = x, we obtain the following derivation tree:

x ↪→ true ` x ↪→ true x ↪→ true ` x ↪→ true
x ↪→ true ` if x then x else x ↪→ true

Note that the evaluation does not even look at expression x in the else branch (because it does not need
to), and thus accesses the environment only twice: one for x in the conditional expression and one for
x in the if branch. In contrast, an ordinary evaluation judgment if x then x else x ↪→ true would apply a
substitution [true/x]x three times, including the case for x in the else branch (which is unnecessary after
all).

Now let us develop the rules for the environment evaluation judgment. We begin with the following
(innocent-looking) set of rules:

x ↪→ v ∈ η

η ` x ↪→ v
Vare η ` λx :A. e ↪→ λx :A. e

Lame

η ` e1 ↪→ λx :A. e η ` e2 ↪→ v2 η, x ↪→ v2 ` e ↪→ v

η ` e1 e2 ↪→ v
Appe

η ` true ↪→ true
Truee η ` false ↪→ false

Falsee

η ` e ↪→ true η ` e1 ↪→ v

η ` if e then e1 else e2 ↪→ v
If truee

η ` e ↪→ false η ` e2 ↪→ v

η ` if e then e1 else e2 ↪→ v
If falsee

The rule Vare accesses environment η to retrieve the value associated with variable x. The third premise
of the rule Appe augments environment η with x ↪→ v2 before starting to evaluating expression e.

It turns out, however, that two of these rules are faulty! (Which ones?) In order to identify the source
of the problem, let us evaluate

(λx :bool. λy :bool. if x then y else false) true

1Note the use of the turnstile symbol `. Like a typing judgment Γ ` e : A, an environment evaluation judgment is an example
of a hypothetical judgment in which x ↪→ v in η has exactly the same meaning as in an ordinary evaluation judgment x ↪→ v, but
is used as a hypothesis. Put another way, there is a good reason for using the syntax x ↪→ v for elements of environments.
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using the environment semantics. The result must be the same closed λ-abstraction that the following
evaluation judgment yields:

(λx :bool. λy :bool. if x then y else false) true ↪→ λy :bool. if true then y else false

To simplify the presentation, let us instead evaluate f true under the following environment:

η = f ↪→ λx :bool. λy :bool. if x then y else false

Then we expect that the following judgment holds:

η ` f true ↪→ λy :bool. if true then y else false

The judgment, however, does not hold because f true evaluates to a λ-abstraction with a free variable x
in it:

η ` f ↪→ λx :bool. λy :bool. if x then y else false

η ` true ↪→ true

η, x ↪→ true ` λy :bool. if x then y else false ↪→ λy :bool. if x then y else false

η ` f true ↪→ λy :bool. if x then y else false
Appe

Why does the resultant λ-abstraction contain a free variable x in it? The reason is that the rule Lame

(which is used by the third premise in the above derivation) fails to take into account the fact that values
for all free variables in λx :A. e are stored in a given environment. Thus the result of evaluating λx :A. e
under environment η should be not just λx :A. e, but λx :A. e together with additional information on
values for free variables in λx :A. e, which is precisely the environment η itself! We write a pair of
λx :A. e and η as [η, λx :A. e], which is called a closure because the presence of η turns λx :A. e into a
closed expression. Accordingly we redefine the set of values and fix the rule Lame as follows:

value v ::= [η, λx :A. e] | true | false

η ` λx :A. e ↪→ [η, λx :A. e]
Lame

Now values are always closed. Note that e and v in η ` e ↪→ v no longer belong to the same syntactic
category, since v may contain closures. That is, a value v as defined above is not necessarily an expres-
sion. In contrast, e and v in e ↪→ v belong to the same syntactic category, namely expressions, since
neither e nor v contains closures.

Now that its first premise yields a closure, the rule Appe also needs to be fixed. Suppose that e1
evaluates to [η′, λx :A. e] and e2 to v2. Since η′ contains values for all free variables in λx :A. e, we
augment η′ with x ↪→ v2 to obtain an environment containing values for all free variables in e. Thus we
evaluate e under η′, x ↪→ v2:

η ` e1 ↪→ [η′, λx :A. e] η ` e2 ↪→ v2 η′, x ↪→ v2 ` e ↪→ v

η ` e1 e2 ↪→ v
Appe

Note that the environment η under which λx :A. e is obtained is not used in evaluating e.
With the new definition of the rules Lame and Appe, f true evaluates to a closure equivalent to

λy :bool. if true then y else false. The following derivation uses an environment η defined as
f ↪→ [·, λx :bool. λy :bool. if x then y else false].

η ` f ↪→ [·, λx :bool. λy :bool. if x then y else false]
η ` true ↪→ true

x ↪→ true ` λy :bool. if x then y else false ↪→ [x ↪→ true, λy :bool. if x then y else false]

η ` f true ↪→ [x ↪→ true, λy :bool. if x then y else false]
Appe
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In order to show the correctness of the environment semantics, we define two mutually recursive
mappings ? and @ :

[η, λx :A. e]
?

= (λx :A. e) @ η
true? = true

false? = false

e @ · = e
e @ η, x ↪→ v = [v?/x](e @ η)

? takes a value v to convert it into a corresponding closed value in the original simply typed λ-calculus.
@ takes an expression e and an environment η to replace each free variable x in e by v? if x ↪→ v is in η;
that is, it applies to e those postponed substitutions represented by η.

The following propositions state the correctness of the environment semantics:

Proposition 9.8. If η ` e ↪→ v, then e @ η ↪→ v?.

Proposition 9.9. If e ↪→ v, then · ` e ↪→ v′ and v′? = v.

In order to simplify their proofs, we introduce an equivalence relation ≡c :

Definition 9.10.
v ≡c v

′ if and only if v? = v′
?.

η ≡c η
′ if and only if x ↪→ v ∈ η means x ↪→ v′ ∈ η′ such that v ≡c v

′, and vice versa.

Intuitively v ≡c v
′ means that v and v′ (which may contain closures) represent the same value in the

simply typed λ-calculus.

Lemma 9.11.
(e e′) @ η = (e @ η) (e′ @ η)

(λx :A. e) @ η = λx :A. (e @ η)
(if e then e1 else e2) @ η = if e @ η then e1 @ η else e2 @ η

Proof of Proposition 9.8. By rule induction on the judgment η ` e ↪→ v.

Lemma 9.12. If η ` e ↪→ v and η ≡c η
′, then η′ ` e ↪→ v′ and v ≡c v

′.

Lemma 9.13. If η ` [v/x]e ↪→ v′, then η, x ↪→ v ` e ↪→ v′′ and v′ ≡c v
′′.

Lemma 9.14. If η ` e @ η′ ↪→ v, then η, η′ ` e ↪→ v′ and v ≡c v
′.

Proof of Proposition 9.9. By rule induction on the judgment e ↪→ v.

9.3 Abstract machine E

The environment evaluation judgment η ` e ↪→ v exploits environments and closures to dispense with
substitutions when evaluating expressions. Still, however, it is not suitable for a practical implementa-
tion of the operational semantics because a single judgment η ` e ↪→ v accounts for the entire evaluation
of a given expression. This section develops an abstract machine E which, like the abstract machine C,
is based on a reduction judgment (derived from the environment evaluation judgment), and, unlike the
abstract machine C, makes no use of substitutions.

As in the abstract machine C, there are two kinds of states in the abstract machine E. The key
difference is that the state analyzing a given expression now requires an environment; the definition of
stack is also slightly different because of the use of environments:

• σ I e @ η means that the machine is currently analyzing e under the environment η. In order to
evaluate a variable in e, we look up the environment η.

• σ J v means that the machine is currently returning v to the stack σ. We do not need an environ-
ment for v because the evaluation of v has been finished.
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If an expression e evaluates to a value v, the initial state of the machine would be 2 I e @ · and the final
state 2 J v where 2 denotes an empty stack.

The formal definition of the abstract machine E is given as follows:

value v ::= [η, λx :A. e] | true | false
environment η ::= · | η, x ↪→ v

frame φ ::= 2η e | [η, λx :A. e] 2 | if 2η then e1 else e2
stack σ ::= 2 | σ;φ
state s ::= σ I e @ η | σ J v

An important difference from the abstract machine C is that a hole within a frame may now need an
environment:

• A frame 2η e indicates that an application e′ e is being reduced and that the environment under
which to evaluate e′ e is η. Hence, after finishing the reduction of e′, we reduce e under environ-
ment η.

• A frame if 2η then e1 else e2 indicates that a conditional construct if e then e1 else e2 is being
reduced and that the environment under which to evaluate if e then e1 else e2 is η. Hence, after
finishing the reduction of e, we reduce either e1 or e2 (depending on the result of reducing e)
under environment η.

Then why do we not need an environment in a frame [η, λx :A. e] 2? Recall from the rule Appe that
after evaluating e1 to [η, λx :A. e] and e2 to v2, we evaluate e under an environment η, x ↪→ v2. Thus η
inside the closure [η, λx :A. e] is the environment to be used after finishing the reduction of whatever
expression is to fill the hole 2, and there is no need to annotate 2 with another environment.

With this intuition in mind, we are now ready to develop the reduction rules for the abstract machine
E. We use a reduction judgment s 7→E s′ for a state transition; we write 7→∗

E for the reflexive and
transitive closure of 7→E . Pay close attention to the use of an environment η, x ↪→ v in the rule AppE.

x ↪→ v ∈ η

σ I x @ η 7→E σ J v
VarE σ I λx :A. e @ η 7→E σ J [η, λx :A. e]

ClosureE

σ I e1 e2 @ η 7→E σ; 2η e2 I e1 @ η
LamE σ; 2η e2 J [η′, λx :A. e] 7→E σ; [η′, λx :A. e] 2 I e2 @ η

ArgE

σ; [η, λx :A. e] 2 J v 7→E σ I e @ η, x ↪→ v
AppE

σ I true @ η 7→E σ J true
TrueE σ I false @ η 7→E σ J false

FalseE

σ I if e then e1 else e2 @ η 7→E σ; if 2η then e1 else e2 I e @ η
If E

σ; if 2η then e1 else e2 J true 7→E σ I e1 @ η
If trueE

σ; if 2η then e1 else e2 J false 7→E σ I e2 @ η
If falseE
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An example of a reduction sequence is shown below:

2 I (λx :bool. λy :bool. if x then y else false) true true @ · LamE

7→E 2; 2· true I (λx :bool. λy :bool. if x then y else false) true @ · LamE

7→E 2; 2· true; 2· true I λx :bool. λy :bool. if x then y else false @ · ClosureE

7→E 2; 2· true; 2· true J [·, λx :bool. λy :bool. if x then y else false] ArgE

7→E 2; 2· true; [·, λx :bool. λy :bool. if x then y else false] 2 I true @ · TrueE

7→E 2; 2· true; [·, λx :bool. λy :bool. if x then y else false] 2 J true AppE

7→E 2; 2· true I λy :bool. if x then y else false @ x ↪→ true ClosureE

7→E 2; 2· true J [x ↪→ true, λy :bool. if x then y else false] ArgE

7→E 2; [x ↪→ true, λy :bool. if x then y else false] 2 I true @ · TrueE

7→E 2; [x ↪→ true, λy :bool. if x then y else false] 2 J true AppE

7→E 2 I if x then y else false @ x ↪→ true, y ↪→ true If E

7→E 2; if 2x↪→true,y↪→true then y else false I x @ x ↪→ true, y ↪→ true VarE

7→E 2; if 2x↪→true,y↪→true then y else false J true If trueE

7→E 2 I y @ x ↪→ true, y ↪→ true VarE

7→E 2 J true

The correctness of the abstract machine E is stated as follows:

Theorem 9.15. η ` e ↪→ v if and only if σ I e @ η 7→∗
E σ J v.

9.4 Fixed point construct in the abstract machine E

In Section 5.4, we have seen that a typical functional language based on the call-by-value strategy re-
quires that e in fix x :A. e be a λ-abstraction. In extending the abstraction machine E with the fixed point
construct, it is mandatory that e in fix x :A. e be a value (although values other than λ-abstractions or
their pairs/tuples for e would not be particularly useful).

Recall the reduction rule for the fixed point construct:

fix x :A. e 7→ [fix x :A. e/x]e

Since the abstract machine E does not use substitutions, a reduction of fix x :A. emust store x ↪→ fix x :A. e
in an environment. Thus we could consider the following reduction rule to incorporate the fixed point
construct:

σ I fix x :A. e @ η 7→E σ I e @ η, x ↪→ fix x :A. e
FixE

Unfortunately the rule Fix E violates the invariant that an environment associates variables with values
rather than with general expressions. Since fix x :A. e is not a value, x ↪→ fix x :A. e cannot be a valid
element of an environment.

Thus we are led to restrict the fixed point construct to λ-abstractions only. In other words, we
consider the fixed point construct of the form fix f :A→B. λx :A. e only. (We use the same idea to allow
pairs/tuples of λ-abstractions in the fixed point construct.) Moreover we write fix f :A→B. λx :A. e as
fun f x :A. e and regard it as a value. Then fun f x :A. e may be interpreted as follows:

• fun f x :A. e denotes a recursive function f with a formal argument x of type A and a body e.

Since fun f x :A. e denotes a recursive function, e may contain references to f .
The abstract syntax for the abstract machine E now allows fun f x :A. e as an expression and [η, fun f x :A. e]

as a new form of closure:

expression e ::= · · · | fun f x :A. e
value v ::= · · · | [η, fun f x :A. e]
frame φ ::= · · · | [η, fun f x :A. e] 2
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A typing rule for fun f x :A. e may be obtained as an instance of the rule Fix, but it is also instructive
to directly derive the rule according to the interpretation of fun f x :A. e. Since e may contain references
to both f (because f is a recursive function) and x (because x is a formal argument), the typing context
for e contains type bindings for both f and x:

Γ, f : A→B, x : A ` e : B

Γ ` fun f x :A. e : A→B
Fun

The reduction rules for fun f x :A. e are similar to those for λ-abstractions, except that the rule AppR
E

augments the environment with not only x ↪→ v but also f ↪→ [η, fun f x :A. e] because f is a recursive
function:

σ I fun f x :A. e @ η 7→E σ J [η, fun f x :A. e]
ClosureR

E

σ; 2η e2 J [η′, fun f x :A. e] 7→E σ; [η′, fun f x :A. e] 2 I e2 @ η
ArgR

E

σ; [η, fun f x :A. e] 2 J v 7→E σ I e @ η, f ↪→ [η, fun f x :A. e], x ↪→ v
AppR

E

9.5 Exercises
Exercise 9.16. Why is it not a good idea to use an environment semantics based on reductions? That
is, what is the problem with using a judgment of the form η ` e 7→ e′?

Exercise 9.17. Extend the abstract machine E for product types and sum types.
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Chapter 10

Exceptions and continuations

In the simply typed λ-calculus, a complete reduction of (λx :A. e) v to another value v′ consists of
a sequence of β-reductions. From the perspective of imperative languages, the complete reduction
consists of two local transfers of control: a function call and a return. We may think of a β-reduction
(λx :A. e) v 7→ [v/x]e as initiating a call to λx :A. e with an argument v, and [v/x]e 7→∗ v′ as returning
from the call with the result v′.

This chapter investigates two extensions to the simply typed λ-calculus for achieving non-local trans-
fers of control. By non-local transfers of control, we mean those reductions that cannot be justified by
β-reductions alone. First we briefly consider a primitive form of exception which in its mature form
enables us to cope with erroneous conditions such as division by zero, pattern match failure, and array
boundary error. Exceptions are also an excellent programming aid. For example, if the specification of
a program requires a function foo that is far from trivial to implement but known to be unused until
the late stage of development, we can complete its framework just by declaring foo such that its body
immediately raises an exception.1 Then we consider continuations which may be thought of as a gen-
eralization of evaluation contexts in Chapter 8. The basic idea behind continuations is that evaluation
contexts are turned into first-class objects which can be passed as arguments to functions or return val-
ues of functions. More importantly, an evaluation context elevated to a first-class object may replace the
current evaluation context, thereby achieving a non-local transfer of control.

Continuations in the simply typed λ-calculus are often compared to the goto construct of imperative
languages. Like the goto construct, continuations are a powerful control construct whose applications
range from a simple optimization of list multiplication (to be discussed in Section 10.2) to an elegant
implementation of the machinery for concurrent computations. On the other side of the coin, continu-
ations are often detrimental to code readability and should be used with great care for the same reason
that the goto construct is avoided in favor of loop constructs in imperative languages.

Both exceptions and continuations are examples of computational effects, called control effects, in
that their presence destroys the equivalence between λ-abstractions and mathematical functions. (In
comparison, mutable references are often called store effects.) As computational effects do not mix well
with the lazy reduction strategy, both kinds of control effects are usually built on top of the eager
reduction strategy.2

10.1 Exceptions

In order to support exceptions in the simply typed λ-calculus, we introduce two new constructs try e with e′

and exn:
expression e ::= · · · | try e with e | exn

Informally try e with e′ starts by evaluating e with an exception handler e′. If e successfully evaluates to
a value v, the whole expression also evaluates to the same value v. In this case, e′ is never visited and
is thus ignored. If the evaluation of e raises an exception by attempting to reduce exn, the exception

1 The exception Unimplemented in our programming assignments is a good example.
2Haskell uses a separate apparatus called monad to deal with computational effects.
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handler e′ is activated. In this case, the result of evaluating e′ serves as the final result of evaluating
try e with e′. Note that e′ may raise another exception, in which case the new exception propagates to
the next try enext with e′

next
such that enext encloses try e with e′.

Formally the operational semantics is extended with the following reduction rules:

exn e 7→ exn Exn (λx :A. e) exn 7→ exn
Exn ′

e1 7→ e′1
try e1 with e2 7→ try e′1 with e2

Try
try v with e 7→ v

Try ′

try exn with e 7→ e
Try ′′

The rules Exn and Exn ′ say that whenever an attempt is made to reduce exn, the whole reduction is
canceled and exn starts to propagate. For example, the reduction of ((λx :A. e) exn) e′ eventually ends
up with exn:

((λx :A. e) exn) e′ 7→ exn e′ 7→ exn

In the rule Try ′, the reduction bypasses the exception handler e because no exception has been raised.
in the rule Try ′′ the reduction activates the exception handler e because an exception has been raised.

Note that Exn and Exn ′ are two rules specifically designed for propagating exceptions raised within
applications. This implies that for all other kinds of constructs, we have to provide separate rules for
propagating exceptions. For example, we need the following rule to handle exceptions raised within
conditional constructs:

if exn then e1 else e2 7→ exn
Exn ′′

Exercise 10.1. Assuming the eager reduction strategy, give rules for propagating exceptions raised
within those constructs for product types and sum types.

10.2 A motivating example for continuations
A prime example for motivating the development of continuations is a recursive function for list mul-
tiplication, i.e., for multiplying all elements in a given list. Let us begin with an SML function imple-
menting list multiplication:

fun multiply l =
let

fun mult nil = 1
| mult (n :: l’) = n * mult l’

in
mult l

end

We wish to optimize multiply by exploiting the property that in the presence of a zero in l, the
return value of multiply is also a zero regardless of other elements in l. Thus, once we encounter an
occurrence of a zero in l, we do not have to multiply remaining elements in the list:

fun multiply’ l =
let

fun mult nil = 1
| mult (0 :: l’) = 0
| mult (n :: l’) = n * mult l’

in
mult l

end

multiply’ is definitely an improvement over multiply, although if l contains no zero, it runs slower
than multiply because of the cost of comparing each element in l with 0. multiply’, however, is
not a full optimization of multiply exploiting the property of multiplication: due to the recursive
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nature of mult, it needs to return a zero as many times as the number of elements before the first zero
in l. Thus an ideal solution would be to exit mult altogether after encountering a zero in l, even without
returning a zero to previous calls to mult. What makes this possible is two constructs, callcc and throw,
for continuations:3

fun multiply’’ l =
callcc (fn ret =>
let

fun mult nil = 1
| mult (0 :: l’) = throw ret 0
| mult (n :: l’) = n * mult l’

in
mult l

end)

Informally callcc (fn ret => ... declares a label ret, and throw ret 0 causes a non-local
transfer of control to the label ret where the evaluation resumes with a value 0. Hence there occurs no
return from mult once throw ret 0 is reached.

Below we give a formal definition of the two constructs callcc and throw.

10.3 Evaluation contexts as continuations
A continuation is a general concept for describing an “incomplete” computation which yields a “com-
plete” computation only when another computation is prepended (or prefixed).4 That is, by joining a
computation with a continuation, we obtain a complete computation. A λ-abstraction λx :A. e may be
seen as a continuation, since it conceptually takes a computation producing a value v and returns a
computation corresponding to [v/x]e. Note that λx :A. e itself does not initiate a computation; it is only
when an argument v is supplied that it initiates a computation of [v/x]e. A better example of contin-
uation is an evaluation context κ which, given an expression e, yields a computation corresponding to
κJeK. Note that like a λ-abstraction, κ itself does not describe a complete computation. In this chapter,
we study evaluation contexts as a means of realizing continuations.

Consider the rule Redβ which decomposes a given expression into a unique evaluation context κ
and a unique subexpression e:

e 7→β e
′

κJeK 7→ κJe′K
Redβ

Since the decomposition under the rule Redβ is implicit and evaluation contexts are not expressions,
there is no way to store κ as an expression. Hence our first goal is to devise a new construct for seizing
the current evaluation context.5 For example, when a given expression is decomposed into κ and e by
the rule Redβ , the new construct would return a (new form of) value storing κ. The second goal is to
involve such a value in a reduction sequence, as there is no point in creating such a value without using
it.

In order to utilize evaluation contexts as continuations in the simply typed λ-calculus, we introduce
three new constructs: 〈κ〉, callcc x. e, and throw e to e′.

• 〈κ〉 is an expression storing an evaluation context κ; we use angle brackets 〈〉 to distinguish it as
an expression not to be confused with an evaluation context. The only way to generate it is to
reduce callcc x. e. As a value, 〈κ〉 is called a continuation.

• callcc x. e seizes the current evaluation context κ and stores 〈κ〉 in x before proceeding to reduce e:

κJcallcc x. eK 7→ κJ[〈κ〉/x]eK
Callcc

In the case that the reduction of e does not use x at all, callcc x. e produces the same result as e.
3 In SML/NJ, open the structure SMLofNJ.Cont to test multiply’’.
4Here “prepend” and “prefix” both mean “add to the beginning.”
5I hate the word seize because the z sound in it is hard to enunciate. Besides I do not want to remind myself of Siege Tanks in

Starcraft!
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• throw e to e′ expects a value v from e and a continuation 〈κ′〉 from e′. Then it starts a reduction of
κ′JvK regardless of the current evaluation context κ:

κJthrow v to 〈κ′〉K 7→ κ′JvK
Throw

In general, κ and κ′ are unrelated with each other, which implies that the rule Throw allows us to
achieve a non-local transfer of control. We say that throw v to 〈κ′〉 throws a value v to a continuation
κ′.

The abstract syntax is extended as follows:

expression e ::= · · · | callcc x. e | throw e to e | 〈κ〉
value v ::= · · · | 〈κ〉

evaluation context κ ::= · · · | throw κ to e | throw v to κ

The use of evaluation contexts throw κ to e and throw v to κ indicates that throw e to e′ reduces e before
reducing e′.

Exercise 10.2. What is the result of evaluating each expression below?

(1) fst callcc x. (true, false) 7→∗ ?
(2) fst callcc x. (true, throw (false, false) to x) 7→∗ ?
(3) snd callcc x. (throw (true, true) to x, false) 7→∗ ?

In the case (1), x is not found in (true, false), so the expression is equivalent to fst (true, false). In the
case (2), the result of evaluating true is eventually ignored because the reduction of throw (false, false) to x
causes (false, false) to replace callcc x. (true, throw (false, false) to x). Thus, in general,
fst callcc x. (e, throw (false, e′) to x) evaluates to false regardless of e and e′ (provided that the evalua-
tion terminates). In the case (3), false is not even evaluated: before reaching false, the reduction of
throw (true, true) to x causes (true, true) to replace callcc x. (throw (true, true) to x, false). Thus, in general,
snd callcc x. (throw (e, true) to x, e′) evaluates to true regardless of e and e′, where e′ is never evaluated:

(1) fst callcc x. (true, false) 7→∗ true

(2) fst callcc x. (e, throw (false, e′) to x) 7→∗ false

(3) snd callcc x. (throw (e, true) to x, e′) 7→∗ true

Now that we have seen the reduction rules for the new constructs, let us turn our attention to their
types. Since 〈κ〉 is a new form of value, we need a new form of type for it. (Otherwise how would we
represent its type?) We assign a type A cont to 〈κ〉 if the hole in κ expects a value of type A. That is, if
κ : A⇒ C holds (see Section 8.2), 〈κ〉 has type A cont:

type A ::= · · · | A cont

κ : A ⇒ C
Γ ` 〈κ〉 : A cont

Context

It is important that a type A cont assigned to a continuation 〈κ〉 specifies the type of an expression e
to fill the hole in κ, but not the type of the resultant expression κJeK. For this reason, a continuation is
usually said to return an “answer” (of an unknown type) rather than a value of a specific type. For a
similar reason, a λ-abstraction serves as a continuation only if it has a designated return type, e.g., Ans,
denoting “answers.”

The typing rules for the other two constructs respect their reduction rules:

Γ, x : A cont ` e : A

Γ ` callcc x. e : A
Callcc

Γ ` e1 : A Γ ` e2 : A cont

Γ ` throw e1 to e2 : C
Throw

The rule Callcc assigns type A cont to x and type A to e for the same type A, since if e has type A, then the
evaluation context when reducing callcc x. e also expects a value of type A for the hole in it. callcc x. e
has the same type as e because, for example, x may not appear in e at all, in which case callcc x. e
produces the same result as e. In the rule Throw, it is safe to assign an arbitrary type C to throw e1 to e2
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because its reduction never finishes: there is no value v such that throw e1 to e2 7→∗ v. In other words,
an “answer” can be an arbitrary type.

An important consequence of the rule Callcc is that when evaluating callcc x. x, a continuation stored
in variable x cannot be part of the result of evaluating expression e. For example, callcc x. x fails to
typecheck because the rule Callcc assigns type A cont to the first x and type A to the second x, but there
is no way to unify A cont and A (i.e., A cont 6= A). Then how can we pass the continuation stored in
variable x to the outside of callcc x. e? Since there is no way to pass it by evaluating e, the only hope is
to throw it to another continuation! (We will see an example in the next section.)

To complete the definition of the three new constructs, we extend the definition of substitution as
follows:

[e′/x]callcc x. e = callcc x. e
[e′/x]callcc y. e = callcc y. [e′/x]e if x 6= y, y 6∈ FV(e′)

[e′/x]throw e1 to e2 = throw [e′/x]e1 to [e′/x]e2
[e′/x]〈κ〉 = 〈κ〉

Type safety is stated in the same way as in Theorems 8.2 and 8.3.

10.4 Composing two continuations
The goal of this section is to develop a function compose of the following type:

compose : (A→B)→B cont→A cont

Roughly speaking, compose f 〈κ〉 joins an incomplete computation (or just a continuation) described by
f with κ to build a new continuation. To be precise, compose f 〈κ〉 returns a continuation κ′ such that
throwing a value v to κ′ has the same effect as throwing f v to κ.

Exercise 10.3. Give a definition of compose. You have to solve two problems: how to create a correct
continuation by placing callcc x. e at the right position and how to return the continuation as the return
value of compose.

The key observations are:

• throw v to (compose f 〈κ〉) is operationally equivalent to throw f v to 〈κ〉.

• For any evaluation context κ′, both throw f v to 〈κ〉 and κ′Jthrow f v to 〈κ〉K evaluate to the same
value. More generally, 〈throw f 2 to 〈κ〉〉 and 〈κ′Jthrow f 2 to 〈κ〉K〉 are semantically no different.

Thus we define compose in such a way that compose f 〈κ〉 returns 〈throw f 2 to 〈κ〉〉.
First we replace 2 in throw f 2 to 〈κ〉 by callcc x. · · · to create a continuation 〈κ′Jthrow f 2 to 〈κ〉K〉

(for a certain evaluation context κ′) which is semantically no different from 〈throw f 2 to 〈κ〉〉:

compose = λf :A→B. λk :B cont. throw f (callcc x. · · ·) to k

Then x stores the very continuation that compose f k needs to return.
Now how do we return x? Obviously callcc x. · · · cannot return x because x has type A cont while

· · · must have type A, which is strictly smaller than A cont. Therefore the only way to return x from · · ·
is to throw it to the continuation starting from the hole in λf :A→B. λk :B cont.2:

compose = λf :A→B. λk :B cont.
callcc y. throw f (callcc x. throw x to y) to k

Note that y has type A cont cont. Since x has type A cont, compose ends up throwing x to a continuation
which expects another continuation!

10.5 Exercises
Exercise 10.4. Extend the abstract machine C with new rules for the reduction judgment s 7→C s

′ so as
to support exceptions. Use a new state σ JJ exn to means that the machine is currently propagating an
exception.
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Chapter 11

Subtyping

Subtyping is a fundamental concept in programming language theory. It is especially important in the
design of an object-oriented language in which the relation between a superclass and its subclasses may
be seen as a subtyping relation. This chapter develops the theory of subtyping by considering various
subtyping relations and discussing the semantics of subtyping.

11.1 Principle of subtyping
The principle of subtyping is a principle specifying when a type is a subtype of another type. It states
that A is a subtype of B if an expression of type A may be used wherever an expression of type B is
expected. Formally we write A ≤ B if A is a subtype of B, or equivalently, if B is a supertype of A.

The principle of subtyping justifies two subtyping rules, i.e., inference rules for deducing subtyping
relations:

A ≤ A
Refl≤

A ≤ B B ≤ C

A ≤ C
Trans≤

The rules Refl≤ and Trans≤ express reflexivity and transitivity of the subtyping relation ≤ , respectively.
The rule of subsumption is a typing rule which enables us to change the type of an expression to its
supertype:

Γ ` e : A A ≤ B

Γ ` e : B
Sub

It is easy to justify the rule Sub using the principle of subtyping. Suppose Γ ` e : A and A ≤ B. Since
e has type A (under typing context Γ), the subtyping relation A ≤ B allows us to use e wherever an
expression of type B is expected, which implies that e is effectively of type B.

There are two kinds of semantics for subtyping: subset semantics and coercion semantics. Under the
subset semantics, A ≤ B holds if type A literally constitutes a “subset” of type B. That is, A ≤ B holds
if a value of type A can also be viewed as a value of type B. The coercion semantics permits A ≤ B if
there exists a unique method to convert values of type A to values of type B.

As an example, consider three base type nat for natural numbers, int for integers, and float for float-
ing point numbers:

base type P ::= nat | int | float

If nat and int use the same representation, say, a 32-bit word, a value of type nat also represents an
integer of type int. Hence a natural number of type nat can be viewed as an integer of type int, which
means that nat ≤ int holds under the subset semantics. If float uses a 64-bit word to represent a floating
point number, a value of type int is not a special value of type float because int uses a representation
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incompatible with 64-bit floating point numbers. Thus int is not a subtype of float under the subset
semantics, even though integers are a subset of floating point numbers in mathematics. Under the coer-
cion semantics, however, int ≤ float holds if there is a function, e.g., int2float, converting 32-bit integers
to 64-bit floating point numbers.

In the next section, we will assume the subset semantics which does not alter the operational se-
mantics and is simpler than the coercion semantics. We will discuss the coercion semantics in detail in
Section 11.3

11.2 Subtyping relations
To explain subtyping relations on various types, let us assume two base types nat and int, and a subtyp-
ing relation nat ≤ int:

type A ::= P | A→A | A×A | A+A | ref A
base type P ::= nat | int

A subtyping relation on two product types tests the relation between corresponding components:

A ≤ A′ B ≤ B′

A×B ≤ A′ ×B′
Prod≤

For example, nat × nat is a subtype of int × int:

nat ≤ int nat ≤ int

nat × nat ≤ int × int
Prod≤

Intuitively a pair of natural numbers can be viewed as a pair of integers because a natural number is
a special form of integer. Similarly we can show that a subtyping relation on two sum types tests the
relation between corresponding components as follows:

A ≤ A′ B ≤ B′

A+B ≤ A′+B′
Sum≤

The subtyping rule for function types requires a bit of thinking. Consider two functions f : A→nat

and f ′ : A→ int. An application of f ′ to an expression e of type A has type int (under a certain typing
context Γ):

Γ ` f ′ e : int

If we replace f ′ by f , we get an application of type nat, but by the rule of subsumption, the resultant
application can be assigned type int as well:

Γ ` f e : nat nat ≤ int

Γ ` f e : int
Sub

Therefore, for the purpose of typechecking, it is always safe to use f wherever f ′ is expected, which
implies that A→nat is a subtype of A→ int. The converse, however, does not hold because there is no
assumption of int ≤ nat. The result is generalized to the following subtyping rule:

B ≤ B′

A→B ≤ A→B′
Fun ′

≤

The rule Fun ′
≤ says that subtyping on function types is covariant in return types in the sense that the

premise places the two return types in the same direction as in the conclusion (i.e., left B and right B ′).
Then we can say that by the rules Prod≤ and Sum≤, subtyping on product types and sum types is also
covariant in both components.
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Now consider two functions g : nat→A and g′ : int→A. Perhaps surprisingly, nat→A is not a sub-
type of int→A whereas int→A is a subtype of nat→A. To see why, let us consider an application of g
to an expression e of type nat (under a certain typing context Γ):

Γ ` g : nat→A Γ ` e : nat

Γ ` g e : A
→E

Since e can be assigned type int by the rule of subsumption, replacing g by g′ does not change the type
of the application:

Γ ` g′ : int→A

Γ ` e : nat nat ≤ int

Γ ` e : int
Sub

Γ ` g′ e : A
→E

Therefore int→A is a subtype of nat→A. To see why the converse does not hold, consider another
application of g′ to an expression e′ of type int:

Γ ` g′ : int→A Γ ` e′ : int

Γ ` g′ e′ : A
→E

If we replace g′ by g, the resultant application does not even typecheck because e′ cannot be assigned
type nat:

Γ ` g : nat→A
Γ ` e′ : int

Γ ` e′ : nat
???

Γ ` g e′ : A
→E

We generalize the result to the following subtyping rule:

A′ ≤ A

A→B ≤ A′→B
Fun ′′

≤

The rule Fun ′′
≤ says that subtyping on function types is contravariant in argument types in the sense that

the premise reverses the position of the two argument types from the conclusion (i.e., left A′ and right
A).

We combine the rules Fun ′
≤ and Fun ′′

≤ into the following subtyping rule:

A′ ≤ A B ≤ B′

A→B ≤ A′→B′
Fun≤

The rule Fun≤ says that subtyping on function types is contravariant in argument types and covariant
in return types.

Subtyping on reference types is unusual in that it is neither covariant nor contravariant. Let us figure
out the relation between two types A and B when ref A ≤ ref B holds:

???
ref A ≤ ref B

Ref≤

Suppose that an expression e has type ref A and another expression e′ type ref B. By the principle of
subtyping, we should be able to use e wherever e′ is used. Since e′ has a reference type, there are two
ways of using e′: dereferencing it and assigning a new value to it.

As an example of the first case, consider a well-typed expression f (!e′) where f has type B→C for
some type C. By the assumption ref A ≤ ref B, expression f (!e) is also well-typed. Since f has type
B→C and !e has type A, the type of !e changes from A to B, which implies A ≤ B. As an example
of the second case, consider a well-typed expression e′ := v where v has type B. By the assumption
ref A ≤ ref B, expression e := v is also well-typed. Since v has type B and e has type ref A, the type of
v changes from B to A, which implies B ≤ A. These two observations lead to the following subtyping
rule for reference types:
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A ≤ B B ≤ A

ref A ≤ ref B
Ref≤

Thus we say that subtyping on reference types is non-variant (i.e., neither covariant nor contravariant).
Another way of looking at the rule Ref≤ is to interpret ref A as an abbreviation of a function type.

We may think of ref A as ?→A for some unknown type ? because dereferencing an expression of
type ref A requires no additional argument (hence ?→ ) and returns an expression of type A (hence
→A). Therefore ref A ≤ ref B implies ?→A ≤ ?→B, which in turn implies A ≤ B by the rule Fun≤.
We may also think ref A as A→unit because assigning a new value to an expression of type ref A re-
quires a value of type A (hence A→ ) and returns a unit (hence →unit). Therefore ref A ≤ ref B implies
A→unit ≤ B→unit, which in turn implies B ≤ A by the rule Fun≤.

While we have not investigated array types, subtyping on array types follows the same pattern as
subtyping on reference types, since an array, like a reference, allows both read and write operations on
it. If we use an array type array A for arrays of elements of type A, we obtain the following subtyping
rule:

A ≤ B B ≤ A

array A ≤ array B
Array≤

Interestingly the Java language adopts a subtyping rule in which subtyping on array rules is covari-
ant in element types:

A ≤ B

array A ≤ array B
Array≤

′

While it is controversial whether the rule Array≤
′ is a flaw in the design of the Java language, using

the rule Array≤
′ for subtyping on array types incurs a runtime overhead which would otherwise be

unnecessary. To be specific, lack of the condition B ≤ A in the premise implies that whenever a value
of type B is written to an array of type array A, the runtime system must verify a subtyping relation
B ≤ A, which incurs a runtime overhead of dynamic tag-checks.

11.3 Coercion semantics for subtyping

Under the coercion semantics, a subtyping relation A ≤ B holds if there exists a unique method to
convert values of type A to values of type B. As a witness to the existence of such a method, we usually
use a λ-abstraction, called a coercion function, of type A→B. We use a coercion subtyping judgment

A ≤ B ⇒ f

to mean that A ≤ B holds under the coercion semantics with a coercion function f of type A→B. For
example, a judgment int ≤ float ⇒ int2float holds if a coercion function int2float converts integers of
type int to floating point number of type float.

The subtyping rules for the coercion subtyping judgment are given as follows:

A ≤ A⇒ λx :A. x
ReflC

≤

A ≤ B ⇒ f B ≤ C ⇒ g

A ≤ C ⇒ λx :A. g (f x)
TransC

≤

A ≤ A′ ⇒ f B ≤ B′ ⇒ g

A×B ≤ A′ ×B′ ⇒ λx :A ×B. (f (fst x), g (snd x))
ProdC

≤

A ≤ A′ ⇒ f B ≤ B′ ⇒ g

A+B ≤ A′+B′ ⇒ λx :A+B. case x of inl y1. inlB′ (f y1) | inr y2. inrA′ (g y2)
SumC

≤

A′ ≤ A ⇒ f B ≤ B′ ⇒ g

A→B ≤ A′→B′ ⇒ λh :A→B. λx :A′. g (h (f x))
FunC

≤
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Unlike the subset semantics which does not change the operational semantics, the coercion seman-
tics affects the way that expressions are evaluated. Suppose that we are evaluating a well-typed expres-
sion e with the following typing derivation which uses a coercion subtyping judgment:

Γ ` e : A A ≤ B ⇒ f

Γ ` e : B SubC

Since the rule SubC tacitly promotes the type of e from A to B, we do not have to insert an explicit call
to the coercion function f to make e typecheck. The result of evaluating e, however, is correct only if
an explicit call to f is made after evaluating e. For example, if e is an argument to another function g
of type B→C (for some type C), g e certainly typechecks but may go wrong at runtime. Therefore the
type system inserts an explicit call to a coercion function each time the rule SubC is used. In the above
case, the type system replaces e by f e after typechecking e using the rule SubC.

A potential problem with the coercion semantics is that the same subtyping relation may have sev-
eral coercion functions which all have the same type but exhibit different behavior. As an example,
consider the following subtyping relations:

int ≤ float ⇒ int2float int ≤ string ⇒ int2string float ≤ string ⇒ float2string

int ≤ string and float ≤ string imply that integers and floating point numbers are automatically con-
verted to strings in all contexts expecting strings. Then the same subtyping judgment int ≤ string has
two coercions functions: int2string and λx : int. float2string (int2float x). The two coercion functions, how-
ever, behave differently. For example, the first converts 0 to "0" whereas the second converts 0 to
"0.0".

We say that a type system for subtypes is coherent if all coercion functions for the same subtyping
relation exhibit the same behavior. In the example above, we can recover coherence by specifying
that float2string converts 0.0 to "0", instead of "0.0", and similarly for all other forms of floating
point numbers. We do not further discuss coherence which is difficult to prove for more complex type
systems.
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Chapter 12

Recursive Types

In programming in a practical functional language, there often arises a need for recursive data structures
(or inductive data structures) whose components are data structures of the same kind but of smaller size.
For example, a tree is a recursive data structure because children of the root node are smaller trees of
the same kind. We may even think of natural numbers as a recursive data structure because a non-zero
natural number can be expressed as a successor of another natural number.

The type system developed so far, however, cannot account for recursive data structures. Intu-
itively types for recursive data structures require recursive definitions at the level of types, but the
previous type system does not provide such a language construct. (Recursive definitions at the level of
expressions can be expressed using the fixed point construct.) This chapter introduces a new language
construct for declaring recursive types which express recursive definitions at the level of types.

With recursive types, we can declare types for recursive data structures. For example, we declare
a recursive type ntree for binary trees of natural numbers (of type nat) with the following recursive
definition:

ntree ∼= nat+(ntree × ntree)

The definition says that ntree is either a single natural number of type nat (corresponding to leaf nodes)
or two such binary trees of type ntree (corresponding to internal nodes).

There are two approaches to formalizing recursive types: equi-recursive and iso-recursive approaches
which differ in the interpretation of ∼= in recursive definitions of types. Under the equi-recursive ap-
proach, ∼= stands for an equality relation. For example, the recursive definition of ntree specifies that
ntree and nat+(ntree × ntree) are equal and thus interchangeable: ntree is automatically (i.e., without
the intervention of programmers) converted to nat+(ntree× ntree) and vice versa whenever necessary
to make a given expression typecheck. Under the iso-recursive approach, ∼= stands for an isomorphic
relation: two types in a recursive definition cannot be identified, but can be converted to each other by
certain functions. For example, the recursive definition of ntree implicitly declares two functions for
converting between ntree and nat+(ntree× ntree):

foldntree : nat+(ntree × ntree)→ntree

unfoldntree : ntree→nat+(ntree × ntree)

To create a value of type ntree, we first create a value of type nat+(ntree × ntree) and then apply function
foldntree ; to analyze a value of type ntree, we first apply function unfoldntree and then analyze the resultant
value using a case expression.

Below we formalize recursive types under the iso-recursive approach. We will also see that SML
uses the iso-recursive approach to deal with datatype declarations.

12.1 Definition
Consider the recursive definition of ntree. We may think of ntree as the solution to the following equa-
tion where α is a type variable standing for “any type” as in SML:

α ∼= nat+(α× α)
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Since substituting ntree for α yields the original recursive definition of ntree, ntree is indeed the solution
to the above equation. We choose to write µα.nat+(α× α) for the solution to the above equation where
α is a fresh type variable. Then we can redefine ntree as follows:

ntree = µα.nat+(α× α)

Generalizing the example of ntree, we use a recursive type µα.A for the solution to the equation
α ∼= A where A may contain occurrences of type variable α:

type A ::= · · · | α | µα.A

The intuition is that C = µα.A means C ∼= [C/α]A. For example, ntree = µα.nat+(α× α) means
ntree ∼= nat+(ntree × ntree). Since µα.A declares a fresh type variable α which is valid only within A,
not every recursive type qualifies as a valid type. For example, µα.α+β is not a valid recursive type
unless it is part of another recursive type declaring type variable β. In order to be able to check the
validity of a given recursive type, we define a typing context as an ordered set of type bindings and
type declarations:

typing context Γ ::= · | Γ, x : A | Γ, α type

We use a new judgment Γ ` A type, called a type judgment, to check that A is a valid type under typing
context Γ:

α type ∈ Γ

Γ ` α type
TyVar

Γ, α type ` A type

Γ ` µα.A type
Tyµ

Given a recursive type C = µα.A, we need to be able to convert [C/α]A to C and vice versa so as to
create or analyze a value of type C. Thus, under the iso-recursive approach, a declaration of a recursive
type C = µα.A implicitly introduces two primitive constructs foldC and unfoldC specialized for type C.
Operationally we may think of foldC and unfoldC as behaving like functions of the following types:

foldC : [C/α]A→C
unfoldC : C→ [C/α]A

As foldC and unfoldC are actually not functions but primitive constructs which always require an
additional expression as an argument (i.e., we cannot treat foldC as a first-class object), the abstract
syntax is extended as follows:

expression e ::= · · · | foldC e | unfoldC e
value v ::= · · · | foldC v

The typing rules for foldC and unfoldC are derived from the operational interpretation of foldC and
unfoldC given above:

C = µα.A Γ ` e : [C/α]A Γ ` C type

Γ ` foldC e : C
Fold

C = µα.A Γ ` e : C

Γ ` unfoldC e : [C/α]A
Unfold

The following reduction rules are based on the eager reduction strategy:

e 7→ e′

foldC e 7→ foldC e′
Fold

e 7→ e′

unfoldC e 7→ unfoldC e′
Unfold

unfoldC foldC v 7→ v
Unfold2

Exercise 12.1. Propose reduction rules for the lazy reduction strategy.

Exercise 12.2. Why do we need no reduction rule for foldC unfoldC v?
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12.2 Recursive data structures
This section presents a few examples of translating datatype declarations of SML to recursive types.
The key idea is two-fold: (1) each datatype declaration in SML implicitly introduces a recursive type;
(2) each data constructor belonging to datatype C implicitly uses foldC and each pattern match for
datatype C implicitly uses unfoldC .

Let us begin with a non-recursive datatype which does not have to be translated to a recursive type:

datatype bool = True | False

Since a value of type bool is either True or False, we translate bool to a sum type unit+unit so as to
express the existence of two alternatives; the use of type unit indicates that data constructors True and
False require no argument:

bool = unit+unit

True = inlunit ()
False = inrunit ()

if e then e1 else e2 = case e of inl . e1 | inr . e2

Thus data constructors, which are separated by | in a datatype declaration, become separated by+when
translated to a type in the simply typed λ-calculus.

Now consider a recursive datatype for natural numbers:

datatype nat = Zero | Succ of nat

A recursive type for nat is the solution to the equation nat ∼= unit+nat where the left unit corresponds
to Zero and the right nat corresponds to Succ:

nat = µα.unit+α

Then both data constructors Zero and Succ first prepare a value of type unit+nat and then “fold” it to
create a value of type nat:

Zero = foldnat inlnat ()
Succ e = foldnat inrunit e

A pattern match for datatype nat works in the opposite way: it first “unfolds” a value of type nat to
obtain a value of type unit+nat which is then analyzed by a case expression:

case e of Zero ⇒ e1 | Succ x ⇒ e2 = case unfoldnat e of inl . e1 | inr x. e2

Similarly a recursive datatype for lists of natural numbers is translated as follows:

datatype nlist = Nil | Cons of nat× nlist

nlist = µα.unit+(nat× α)
Nil = foldnlist inlnat×nlist ()

Cons e = foldnlist inrunit e
case e of Nil ⇒ e1 | Cons x⇒ e2 = case unfoldnlist e of inl . e1 | inr x. e2

As an example of a recursive type that does not use a sum type, let us consider a datatype for streams
of natural numbers:

datatype nstream = Nstream of unit→nat× nstream

nstream = µα.unit→nat× α

When “unfolded,” a value of type nstream yields a function of type unit→nat× nstreamwhich returns
a natural number and another stream. For example, the following λ-abstraction has type nstream→nat× nstream:

λs :nstream. unfoldnstream s ()

The following function, of type nat→nstream, returns a stream of natural numbers beginning with its
argument:

λn :nat. (fix f :nat→nstream. λx :nat. foldnstream λy :unit. (x, f (Succ x))) n
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12.3 Typing the untyped λ-calculus
A further application of recursive types is a translation of the untyped λ-calculus to the simply typed
λ-calculus augmented with recursive types. Specifically we wish to translate the untyped λ-calculus to
the simply typed λ-calculus with the following definition:

type A ::= A→A | α | µα.A
expression e ::= x | λx :A. e | e e | foldA e | unfoldA e

Note that unlike the pure simply typed λ-calculus, the definition of types does not include base types.
We translate an expression e in the untyped λ-calculus to an expression e◦ in the simply typed λ-

calculus. We treat all expressions in the untyped λ-calculus alike by assigning a unique type Ω (i.e., e◦
is to have type Ω). Then the key to the translation is to find such a unique type Ω.

It is not difficult to find such a type Ω when recursive types are available. If every expression is
assigned type Ω, we may think that λx. e is assigned type Ω→Ω as well as type Ω. Or, in order for e1 e2
to be assigned type Ω, e1 must be assigned not only type Ω but also type Ω→Ω because e2 is assigned
type Ω. Thus Ω must be identified with Ω→Ω (i.e., Ω ∼= Ω→Ω) and is defined as follows:

Ω = µα.α→α

Then expressions in the untyped λ-calculus are translated as follows:

x◦ = x
(λx. e)

◦
= foldΩ λx :Ω. e◦

(e1 e2)
◦

= (unfoldΩ e1
◦) e2

◦

Proposition 12.3. · ` e◦ : Ω holds for any expression e in the untyped λ-calculus.

Proposition 12.4. If e 7→ e′, then e◦ 7→∗ e′
◦.

In Proposition 12.4, extra reduction steps in e◦ 7→∗ e′◦ are due to applications of the rule Unfold2 .
An interesting consequence of the translation is that despite the absence of the fixed point construct,

the reduction of an expression in the simply typed λ-calculus with recursive types may not terminate!
For example, the reduction of ((λx. x x) (λx. x x))◦ does not terminate because (λx. x x) (λx. x x) re-
duces to itself. In fact, we can even write recursive functions — all we have to do is to translate the
fixed point combinator fix (see Section 3.5)!

12.4 Exercises
Exercise 12.5. Consider the simply typed λ-calculus augmented with recursive types. We use a function
type A→B for non-recursive functions from type A to type B. Now let us introduce another function
type A⇒B for recursive functions from type A to type B. Define A⇒B in terms of ordinary function
types and recursive types.
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Chapter 13

Polymorphism

In programming language theory, polymorphism (where poly means “many” and morph “shape”) refers
to the mechanism by which the same piece of code can be reused for different types of objects. C++
templates are a good example of a language construct for polymorphism: the same C++ template can
be instantiated to different classes which operate on different types of objects all in a uniform way. The
recent version of Java (J2SE 5.0) also supports generics which provides polymorphism in a similar way
to C++ templates.

There are two kinds of polymorphism: parametric polymorphism and ad hoc polymorphism. Para-
metric polymorphism enables us to write a piece of code that operates on all types of objects all in
a uniform way. Such a piece of code provides a high degree of generality by accepting all types of
objects, but cannot exploit specific properties of different types of objects.1 Ad hoc polymorphism, in
contrast, allows a piece of code to exhibit different behavior depending on the type of objects it oper-
ates on. The operator + of SML is an example of ad hoc polymorphism: both int * int -> int and
real * real -> real are valid types for +, which manipulates integers and floating point numbers
differently. In this chapter, we restrict ourselves to parametric polymorphism.

We begin with System F, an extension of the untyped λ-calculus with polymorphic types. Despite its
syntactic simplicity and rich expressivity, System F is not a good framework for practical functional
languages because the problem of assigning a polymorphic type (of System F) to an expression in
the untyped λ-calculus is undecidable (i.e., there is no algorithm for solving the problem for all in-
put expressions). We will then take an excursion to the predicate polymorphic λ-calculus, another ex-
tension of the untyped λ-calculus with polymorphic types which is a sublanguage of System F and is
thus less expressive than System F. (Interestingly it uses slightly more complex syntax.) Our study of
polymorphism will culminate in the formulation of the polymorphic type system of SML, called let-
polymorphism, which is a variant of the type system of the predicate polymorphic λ-calculus. Hence the
study of System F is our first step toward the polymorphic type system of SML!

13.1 System F
Consider a λ-abstraction λx. x of the untyped λ-calculus. We wish to extend the definition of the un-
typed λ-calculus so that we can assign a type to λx. x. Assigning a type to λx. x involves two tasks:
binding variable x to a type and deciding the type of the resultant expression.

In the case of the simply typed λ-calculus, we have to choose a specific type for variable x, say, bool.
Then the resultant λ-abstraction λx :bool. x has type bool→bool. Ideally, however, we do not want to
stipulate a specific type for x because λx. x is an identity function that works for any type. For example,
λx. x is an identify function for an integer type int, but once the type of λx. x is fixed as bool→bool, we
cannot use it for integers. Hence a better answer would be to bind x to an “any type” α and assign type
α→α to λx :α. x.

Now every variable in the untyped λ-calculus is assigned an “any type,” and there arises a need to
distinguish between different “any types.” As an example, consider a λ-abstraction λx. λy. (x, y) where

1Generics in the Java language does not fully support parametric polymorphism: it accepts only Java objects (of class Object),
and does not accept primitive types such as int.
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(x, y) denotes a pair of x and y. Since both x and y may assume an “any type,” we could assign the
same “any type” to x and y as follows:

λx :α. λy :α. (x, y) : α→α→α× α

Although it is fine to assign the same “any type” to both x and y, it does not give the most general type
for λx. λy. (x, y) because x and y do not have to assume the same type in general. Instead we need to
assign a different “any type” β to y so that x and y remain independent of each other:

λx :α. λy :β. (x, y) : α→β→α× β

Since each variable in a given expression may need a fresh “any type,” we introduce a new construct
Λα. e, called a type abstraction, for declaring α as a fresh “any type,” or a fresh type variable. That is, a
type abstraction Λα. e declares a type variable α for use in expression e; we may rename α in a way
analogous to α-conversions on λ-abstractions. If e has type A, then Λα. e is assigned a polymorphic
type ∀α.Awhich reads “for all α,A.” Note thatA in ∀α.A may use α (e.g.,A = α→α). Then λx. λy. (x, y)
is converted to the following expression:

Λα.Λβ. λx :α. λy :β. (x, y) : ∀α.∀β.α→β→α× β

→ has a higher operator precedence than ∀, so ∀α.A→B is equal to ∀α.(A→B), not (∀α.A)→B. Hence
∀α.∀β.α→β→α× β is equal to ∀α.∀β.(α→β→α× β).

Back to the example of the identity function which is now written as Λα. λx :α. x of type ∀α.α→α,
let us apply it to a boolean truth true of type bool. First we need to convert Λα. λx :α. x to an identity
function λx :bool. x by instantiating α to a specific type bool. To this end, we introduce a new construct
e JAK, called a type application, such that (Λα. e) JAK reduces to [A/α]e which substitutes A for α in e:

(Λα. e) JAK 7→ [A/α]e

(Thus the only difference of a type application e JAK from an ordinary application e1 e2 is that a type
application substitutes a type for a type variable instead of an expression for an ordinary variable.)
Then (Λα. λx :α. x) JboolK reduces to an identity function specialized for type bool, and an ordinary
application (Λα. λx :α. x) JboolK true finishes the job.

System F is essentially an extension of the untyped λ-calculus with type abstractions and type appli-
cations. Although variables in λ-abstractions are always annotated with their types, we do not consider
System F as an extension of the simply typed λ-calculus because System F does not have to assume base
types. The abstract syntax for System F is as follows:

type A ::= A→A | α | ∀α.A
expression e ::= x | λx :A. e | e e | Λα. e | e JAK

value v ::= λx :A. e | Λα. e

The reduction rules for type applications are analogous to those for ordinary applications except that
there is no reduction rule for types:

e 7→ e′

e JAK 7→ e′ JAK
Tlam

(Λα. e) JAK 7→ [A/α]e
Tapp

[A/α]e substitutes A for α in e; we omit its pedantic definition here. For ordinary applications, we reuse
the reductions rules for the simply typed λ-calculus.

There are two important observations to make about the abstract syntax. First the syntax for type
applications implies that type variables may be instantiated to all kinds of types, including even poly-
morphic types. For example, the identity function Λα. λx :α. x may be applied to its own type ∀α.α→α!
Such flexibility in type applications is the source of rich expressivity of System F, but on the other hand,
it also makes System F a poor choice as a framework for practical functional languages. Second we
define a type abstraction Λα. e as a value, even though it appears to be computationally equivalent to e.
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As an example, let us write a function compose for composing two functions. One approach is to
require that all type variables in the type of compose be instantiated before producing a λ-abstraction:

compose : ∀α.∀β.∀γ.(α→β)→(β→γ)→(α→γ)
compose = Λα.Λβ.Λγ. λf :α→β. λg :β→γ. λx :α. g (f x)

Alternatively we may require that only the first two type variables α and β be instantiated before pro-
ducing a λ-abstraction which returns a type abstraction expecting the third type variable γ:

compose : ∀α.∀β.(α→β)→∀γ.(β→γ)→(α→γ)
compose = Λα.Λβ. λf :α→β.Λγ. λg :β→γ. λx :α. g (f x)

As for the type system, System F is not a straightforward extension of the simply typed λ-calculus
because of the inclusion of type variables. In the simply typed λ-calculus, x : A qualifies as a valid type
binding regardless of type A and the order of type bindings in a typing context does not matter by
Proposition 4.1. In System F, x : A may not qualify as a valid type binding if type A contains type vari-
ables. For example, without type abstractions declaring type variables α and β, we may not use α→β
as a type and hence x : α→β is not a valid type binding. This observation leads to the conclusion that
in System F, a typing context consists not only of type bindings but also of a new form of declarations
for indicating which type variables are valid and which are not; moreover the order of elements in a
typing context now does matter because of type variables.

We define a typing context as an ordered set of type bindings and type declarations; a type declaration
α type declares α as a type, or equivalently, α as a valid type variable:

typing context Γ ::= · | Γ, x : A | Γ, α type

We simplify the presentation by assuming that variables and type variables in a typing context are
all distinct. We consider a type variable α as valid only if its type declaration appears to its left. For
example, Γ1, α type, x : α→α is a valid typing context because α in x : α→α has been declared as a type
variable in α type (provided that Γ1 is also a valid typing context). Γ1, x : α→α, α type is, however, not
a valid typing context because α is used in x : α→α before it is declared as a type variable in α type.

The type system of System F uses two forms of judgments: a typing judgment Γ ` e : A whose
meaning is the same as in the simply typed λ-calculus, and a type judgment Γ ` A type which means that
A is a valid type with respect to typing context Γ.2 We need type judgments because the definition of
syntactic category type in the abstract syntax is incapable of differentiating valid type variables from
invalid ones. We refer to an inference rule deducing a type judgment as a type rule.

The type system of System F uses the following rules:

Γ ` A type Γ ` B type

Γ ` A→B type
Ty→

α type ∈ Γ

Γ ` α type
TyVar

Γ, α type ` A type

Γ ` ∀α.A type
Ty∀

x : A ∈ Γ
Γ ` x : A

Var
Γ, x : A ` e : B

Γ ` λx :A. e : A→B
→I

Γ ` e : A→B Γ ` e′ : A
Γ ` e e′ : B

→E

Γ, α type ` e : A

Γ ` Λα. e : ∀α.A
∀I

Γ ` e : ∀α.B Γ ` A type

Γ ` e JAK : [A/α]B
∀E

A proof of a type judgment Γ ` A type does not use type bindings in Γ. In the rule →I, the typing
context Γ, x : A assumes that A is a valid type with respect to Γ. Hence the rule →I does not need
a separate premise Γ ` A type. The rule ∀I, called the ∀ Introduction rule, introduces a polymorphic
type ∀α.A from the judgment in the premise. The rule ∀E, called the ∀ Elimination rule, eliminates a
polymorphic type ∀α.B by substituting a valid type A for type variable α. Note that the typing rule ∀E

uses a substitution of a type into another type whereas the reduction rule Tapp uses a substitution of a
type into an expression.

2A type judgment Γ ` A type is also an example of a hypothetical judgment which deduces a “judgment” A type using each
“judgment” Ai type in Γ as a hypothesis.
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As an example of a typing derivation, let us find the type of an identity function specialized for type
bool; we assume that Γ ` bool type holds for any typing context Γ (see the type rule TyBool below):

α type, x : α ` x : α
Var

α type ` λx :α. x : α→α
→I

· ` Λα. λx :α. x : ∀α.α→α
∀I

· ` bool type
TyBool

· ` (Λα. λx :α. x) JboolK : [bool/α](α→α)
∀E

Since [bool/α](α→α) is equal to bool→bool, the type application has type bool→bool.
The proof of type safety of System F needs three substitution lemmas as there are three kinds of

substitutions: [A/α]B for the rule ∀E, [A/α]e for the rule Tapp , and [e′/x]e for the rule App. We write
[A/α]Γ for substituting A for α in all type bindings in Γ.

Lemma 13.1 (Type substitution into types).
If Γ ` A type and Γ, α type,Γ′ ` B type, then Γ, [A/α]Γ′ ` [A/α]B type.

Lemma 13.2 (Type substitution into expressions).
If Γ ` A type and Γ, α type,Γ′ ` e : B, then Γ, [A/α]Γ′ ` [A/α]e : [A/α]B.

Lemma 13.3 (Expression substitution).
If Γ ` e : A and Γ, x : A,Γ′ ` e′ : C , then Γ,Γ′ ` [e/x]e′ : C.

In Lemmas 13.1 and 13.2, we have to substitute A into Γ′, which may contain types involving α.
In Lemma 13.2, we have to substitute A into e and B, both of which may contain types involving α.
Lemma 13.3 reflects the fact that typing contexts are ordered sets.

The proof of type safety of System F is similar to the proof for the simply typed λ-calculus. We need
to extend the canonical forms lemma (Lemma 4.5) and the inversion lemma (Lemma 4.8):

Lemma 13.4 (Canonical forms).
If v is a value of type ∀α.A, then v is a type abstraction Λα. e.

Lemma 13.5 (Inversion). Suppose Γ ` e : C.
If e = Λα. e′, then C = ∀α.A and Γ, α type ` e′ : A.

Theorem 13.6 (Progress). If · ` e : A for some typeA, then either e is a value or there exists e′ such that e 7→ e′.

Theorem 13.7 (Type preservation). If Γ ` e : A and e 7→ e′, then Γ ` e′ : A.

13.2 Type reconstruction

The type systems of the simply typed λ-calculus and System F require that all variables in λ-abstractions
be annotated with their types. While it certainly simplifies the proof of type safety (and the study
of type-theoretic properties in general), such a requirement on variables is not a good idea when it
comes to designing practical functional languages. One reason is that annotating all variables with
their types does not always improve code readability. On the contrary, excessive type annotations
often reduces code readability! For example, one would write an SML function adding two inte-
gers as fn x => fn y => x + y, which is no less readable than a fully type-annotated function
fn x : int => fn y : int => x + y. A more important reason is that in many cases, types of
variables can be inferred, or reconstructed, from the context. For example, the presence of + in fn x =>
fn y => x + y gives enough information to decide a unique type int for both x and y. Thus we
wish to eliminate such a requirement on variables, so as to provide programmers with more flexibility
in type annotations, by developing a type reconstruction algorithm which automatically infers types for
variables.

In the case of System F, the goal of type reconstruction is to convert an expression e in the untyped
λ-calculus to a well-typed expression e′ in System F such that erasing type annotations (including type
abstractions and type applications) in e′ yields the original expression e. That is, by reconstructing
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types for all variables in e, we obtain a new well-typed expression e′ in System F. Formally we define
an erasure function erase(·) which takes an expression in System F and erases all type annotations in it:

erase(x) = x
erase(λx :A. e) = λx. erase(e)
erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = erase(e)
erase(e JAK) = erase(e)

The erasure function respects the reduction rules for System F in the following sense:

Proposition 13.8. If e 7→ e′ holds in System F, then erase(e) 7→∗ erase(e′) holds in the untyped λ-calculus.

The problem of type reconstruction is then to convert an expression e in the untyped λ-calculus to a
well-typed expression e′ in System F such that erase(e′) = e. We say that an expression e in the untyped
λ-calculus is typable in System F if there exists such a well-typed expression e′.

As an example, let us consider an untyped λ-abstraction λx. x x. It is not typable in the simply typed
λ-calculus because the first x in x x must have a type strictly larger than the second x, which is impos-
sible. It is, however, typable in System F because we can replace the first x in x x by a type application.
Specifically λx :∀α.α→α. x J∀α.α→αK x is a well-typed expression in System F which erases to λx. x x:

x : ∀α.α→α ` x : ∀α.α→α
Var

x : ∀α.α→α ` ∀α.α→α type

x : ∀α.α→α ` x J∀α.α→αK : (∀α.α→α)→(∀α.α→α)
∀E

x : ∀α.α→α ` x : ∀α.α→α
Var

x : ∀α.α→α ` x J∀α.α→αK x : ∀α.α→α
→E

· ` λx :∀α.α→α. x J∀α.α→αK x : (∀α.α→α)→(∀α.α→α)
→I

The proof of x : ∀α.α→α ` ∀α.α→α type is shown below:

α type ∈ x : ∀α.α→α, α type

x : ∀α.α→α, α type ` α type
TyVar

α type ∈ x : ∀α.α→α, α type

x : ∀α.α→α, α type ` α type
TyVar

x : ∀α.α→α, α type ` α→α type
Ty→

x : ∀α.α→α ` ∀α.α→α type
Ty∀

(The proof does not use the type binding x : ∀α.α→α.) Hence a type reconstruction algorithm for
System F, if any, would convert λx. x x to λx :∀α.α→α. x J∀α.α→αK x.

It turns out that not every expression in the untyped λ-calculus is typable in System F. For example,
omega = (λx. x x) (λx. x x) is not typable: there is no well-typed expression in System F that erases to
omega. The proof exploits the normalization property of System F which states that the reduction of a
well-typed expression in System F always terminates. Thus a type reconstruction algorithm for System
F first decides if a given expression e is typable or not in System F; if e is typable, the algorithm yields a
corresponding expression in System F.

Unfortunately the problem of type reconstruction in System F is undecidable: there is no algorithm
for deciding whether a given expression in the untyped λ-calculus is typable or not in System F. Our
plan now is to find a compromise between rich expressivity and decidability of type reconstruction
— we wish to identify a sublanguage of System F that supports polymorphic types and also has a
decidable type construction algorithm. Section 13.4 presents such a sublanguage, called the predicative
polymorphic λ-calculus, which is extended to the polymorphic type system of SML in Section 13.5.

13.3 Programming in System F
We have seen in Section 3.4 how to encode common datatypes in the untyped λ-calculus. While these
expressions correctly encode their respective datatypes, unavailability of a type system makes it difficult
to express the intuition behind the encoding of each datatype. Besides it is often tedious and even
unreliable to check the correctness of an encoding without recourse to a type system.

In this section, we rewrite these untyped expressions into well-typed expressions in System F. A
direct definition of a datatype in terms of types in System F provides the intuition behind its encoding,
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and availability of type annotations within expressions makes it easy to check the correctness of the
encoding.

Let us begin with base types bool and nat for Church booleans and numerals, respectively. The
intuition behind Church booleans is that a boolean value chooses one of two different options. The
following definition of the base type bool is based on the decision to assign the same type α to both
options:

bool = ∀α.α→α→α

Then boolean values true and false, both of type bool, are encoded as follows:

true = Λα. λt :α. λf :α. t
false = Λα. λt :α. λf :α. f

The intuition behind Church numerals is that a Church numeral n̂ takes a function f and returns
another function fn which applies f exactly n times. In order for fn to be well-typed, its argument type
and return type must be identical. Hence we define the base type nat in System F as follows:3

nat = ∀α.(α→α)→(α→α)

Then a zero zero of type nat and a successor function succ of type nat→nat are encoded as follows:

zero = Λα. λf :α→α. λx :α. x
succ = λn :nat.Λα. λf :α→α. λx :α. (n JαK f) (f x)

The definition of a product type A×B in System F exploits the fact that in essence, a value of type
A×B contains a value of type A and another value of type B. If we think of A→B→α as a type for
a function taking two arguments of types A and B and returning a value of type α, a value of type
A×B contains everything necessary for applying such a function, which is expressed in the following
definition of A×B:

A×B = ∀α.(A→B→α)→α

Pairs and projections are encoded as follows; note that without type annotations, these expressions
degenerate to pairs and projections for the untyped λ-calculus given in Section 3.4:

pair : ∀α.∀β.α→β→α× β = Λα.Λβ. λx :α. λy :β.Λγ. λf :α→β→γ. f x y
fst : ∀α.∀β.α× β→α = Λα.Λβ. λp :α× β. p JαK (λx :α. λy :β. x)

snd : ∀α.∀β.α× β→β = Λα.Λβ. λp :α× β. p JβK (λx :α. λy :β. y)

The type unit is a general product type with no element and is thus defined as ∀α.α→α which is ob-
tained by removing A and B from the definition of A×B. The encoding of a unit () is obtained by
removing x and y from the encoding of pair:

() : unit = Λα. λx :α. x

The definition of a sum typeA+B in System F reminds us of the typing rule+E for sum types: given
a function f of typeA→α and another function g of typeB→α, a value v of typeA+B applies the right
function (either f or g) to the value contained in v:

A+B = ∀α.(A→α)→(B→α)→α

Injections and case expressions are translations of the typing rules+IL,+IR, and+E:

inl : ∀α.∀β.α→α+β
inr : ∀α.∀β.β→α+β

case : ∀α.∀β.∀γ.α+β→(α→γ)→(β→γ)→γ

Exercise 13.9. Encode inl, inr, and case in System F.

The type void is a general sum type with no element and is thus defined as ∀α.α which is obtained
by removing A and B from the definition of A+B. Needless to say, there is no expression of type void

in System F. (Why?)
3 We may also interpret nat as nat = ∀α.(α→α)→α→α such that a Church numeral bn takes a successor function succ of

type α→α and a zero zero of type α to return succn
O of type α.
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13.4 Predicative polymorphic λ-calculus
This section presents the predicative polymorphic λ-calculus which is a sublanguage of System F with
a decidable type construction algorithm. It is still not a good framework for practical functional lan-
guages because polymorphic types are virtually useless! Nevertheless it helps us a lot to motivate the
development of let-polymorphism, the most popular polymorphic type system found in modern func-
tional languages.

The key observation is that undecidability of type reconstruction in System F is traced back to the
self-referential nature of polymorphic types: we augment the set of types with new elements called
type variables and polymorphic types, but the syntax for type applications allows type variables to
range over not only existing types (such as function types) but also these new elements which include
polymorphic types themselves. That is, there is no restriction on type A in a type application e JAK
where type A, which is to be substituted for a type variable, can be not only a function type but also
another polymorphic type.

The predicative polymorphic λ-calculus recovers decidability of type reconstruction by prohibiting
type variables from ranging over polymorphic types. We stratify types into two kinds: monotypes which
exclude polymorphic types and polytypes which include all kinds of types:

monotype A ::= A→A | α
polytype U ::= A | ∀α.U

expression e ::= x | λx :A. e | e e | Λα. e | e JAK
value v ::= λx :A. e | Λα. e

typing context Γ ::= · | Γ, x : A | Γ, α type

A polytype is always written as ∀α.∀β.· · ·∀γ.A→A′ where A→A′ cannot contain polymorphic types.
For example, (∀α.α→α)→(∀α.β→β) is not a polytype whereas ∀α.∀β.(α→α)→(β→β) is. We say that
a polytype is written in prenex form because a type quantifier ∀α may appear only as part of its prefix.

The main difference of the predicative polymorphic λ-calculus from System F is that a type appli-
cation e JAK now accepts only a monotype A. (In System F, there is no distinction between monotypes
and polytypes, and a type application can accept polymorphic types.) A type application e JAK itself,
however, has a polytype if e has a polytype ∀α.U where U is another polytype (see the typing rule ∀E

below).
As in System F, the type system of the predicative polymorphic λ-calculus uses two forms of judg-

ments: a typing judgment Γ ` e : U and a type judgment Γ ` A type. The difference is that Γ ` A type

now checks if a given type is a valid monotype. That is, we do not use a type judgment Γ ` U type

(which is actually unnecessary because every polytype is written in prenex form anyway). Thus the
system system uses the following rules; note that the rule Ty∀ from System F is gone:

Γ ` A type Γ ` B type

Γ ` A→B type
Ty→

α type ∈ Γ

Γ ` α type
TyVar

x : A ∈ Γ
Γ ` x : A

Var
Γ, x : A ` e : B

Γ ` λx :A. e : A→B
→I

Γ ` e : A→B Γ ` e′ : A
Γ ` e e′ : B

→E

Γ, α type ` e : U

Γ ` Λα. e : ∀α.U
∀I

Γ ` e : ∀α.U Γ ` A type

Γ ` e JAK : [A/α]U
∀E

Unfortunately the use of a monotype A in a λ-abstraction λx :A. e defeats the purpose of introducing
polymorphic types into the type system: even though we can now write an expression of a polytype
U , we can never instantiate type variables in U more than once! Suppose, for example, that we wish to
apply a polymorphic identity function id = Λα. λx :α. x to two different types, say, bool and int. In the
untyped λ-calculus, we would bind a variable f to an identity function and then apply f twice:

(λf. pair (f true) (f 0)) (λx. x)

In the predicative polymorphic λ-calculus, it is impossible to reuse id more than once in this way, since
f must be given a monotype while id has a polytype:
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(λf :∀α.α→α. (f JboolK true, f JintK 0)) id (ill-typed)

(Here we use pairs for product types.) If we apply id to a monotype bool (or int), f 0 (or f true) in the
body fails to typecheck:

(λf :bool→bool. (f true, f 0)) (id JboolK) (ill-typed)

Thus the only interesting way to use a polymorphic function (of a polytype) is to use it “monomorphi-
cally” by converting it to a function of a certain monotype!

Let-polymorphism extends the predicative polymorphic λ-calculus with a new construct that en-
ables us to use a polymorphic expression polymorphically in the sense that type variables in it can be
instantiated more than once. The new construct preserves decidability of type reconstruction, so let-
polymorphism is a good compromise between expressivity and decidability of type reconstruction.

13.5 Let-polymorphism
Let-polymorphism extends the predicative polymorphic λ-calculus with a new construct, called a let-binding,
for declaring variables of polytypes. A let-binding let x :U = e in e′ binds x to a polymorphic expression
e of type U and allows multiple occurrences of x in e′. With a let-binding, we can apply a polymorphic
identity function to two different (mono)types bool and int as follows:

let f :∀α.α→α = Λα. λx :α. x in (f JboolK true, f JintK 0))

Since variables can now assume polytypes, we use type bindings of the form x : U instead of x : A.
We require that let-bindings themselves be of monotypes:

expression e ::= · · · | let x :U = e in e
typing context Γ ::= · | Γ, x : U | Γ, α type

x : U ∈ Γ
Γ ` x : U

Var
Γ ` e : U Γ, x : U ` e′ : A

Γ ` let x :U = e in e′ : A
Let

The reduction of a let-binding let x :U = e in e′ proceeds by substituting e for x in e′:

let x :U = e in e′ 7→ [e/x]e′

Depending on the reduction strategy, we may choose to fully evaluate e before performing the substi-
tution.

Although let x :U = e in e′ reduces to the same expression that an application (λx :A. e′) e reduces
to, it is not syntactic sugar for (λx :A. e′) e: when e has a polytype U , let x :U = e in e′ may typecheck
by the rule Let, but in general, (λx :A. e′) e does not typecheck because monotype A does not match
the type of e. Therefore, in order to use a polymorphic expression polymorphically, we must bind it to a
variable using a let-binding instead of a λ-abstraction.

Then why do we not just allow a λ-abstraction λx :U. e binding x to a polytype (which would de-
generate let x :U = e in e′ into syntactic sugar)? The reason is that with an additional assumption that e
may have a polytype (e.g., λx :U. x), such a λ-abstraction collapses the distinction between monotypes
and polytypes. That is, polytypes constitute types of System F:

monotype A ::= U→U | α
polytype U ::= A | ∀α.U

⇐⇒ type U ::= U→U | α | ∀α.U

We may construe a let-binding as a restricted use of a λ-abstraction λx :U. e (binding x to a polytype)
such that it never stands alone as a first-class object and must be applied to a polymorphic expression
immediately. At the cost of flexibility in applying such λ-abstractions, let-polymorphism retains de-
cidability of type reconstruction without destroying the distinction between monotypes and polytypes
and also without sacrificing too much expressivity. After all, we can still enjoy both polymorphism and
decidability of type reconstruction, which is the reason why let-polymorphism is so popular among
mainstream functional languages.
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13.6 Implicit polymorphism

The polymorphic type systems considered so far are all “explicit” in that polymorphic types are in-
troduced explicitly by type abstractions and that type variables are instantiated explicitly by type ap-
plications. An explicit polymorphic type system has the property that every well-typed polymorphic
expression has a unique polymorphic type.

The type system of SML uses a different approach to polymorphism: it makes no use of type ab-
stractions and type applications, but allows an expression to have multiple types by requiring no type
annotations in λ-abstractions. That is, polymorphic types arise “implicitly” from lack of type annota-
tions in λ-abstractions.

As an example, consider an identity function λx. x. It can be assigned such types as bool→bool,
int→ int, (int→ int)→(int→ int), and so on. These types are all distinct, but are subsumed by the same
polytype ∀α.α→α in the sense that they are results of instantiating α in ∀α.α→α. We refer to ∀α.α→α
as the principal type of λx. x, which may be thought of as the most general type for λx. x, as opposed
to specific types such as bool→bool and int→ int. The type reconstruction algorithm of SML infers a
unique principal type for every well-typed expression. Below we discuss the type system of SML and
defer details of the type reconstruction algorithm to Section 13.8.

In essence, the type system of SML uses let-polymorphism without type annotations (in λ-abstractions
and let-bindings), type abstractions, and type applications:

monotype A ::= A→A | α
polytype U ::= A | ∀α.U

expression e ::= x | λx. e | e e | let x = e in e
value v ::= λx. e

typing context Γ ::= · | Γ, x : U | Γ, α type

We use a new typing judgment Γ . e : U to express that untyped expression e is typable with a
polytype U . The intuition (which will be made clear in Theorem 13.11) is that if Γ . e : U holds where
e is untyped, there exists a typed expression e′ such that Γ ` e′ : U and e′ erases to e by the following
erasure function:

erase(x) = x
erase(λx :A. e) = λx. erase(e)
erase(e1 e2) = erase(e1) erase(e2)
erase(Λα. e) = erase(e)
erase(e JAK) = erase(e)
erase(let x :U = e in e′) = let x = erase(e) in erase(e′)

That is, if Γ . e : U holds, e has its counterpart in let-polymorphism in Section 13.5. The rules for the
typing judgment Γ . e : U are given as follows:

x : U ∈ Γ
Γ . x : U

Var
Γ, x : A . e : B

Γ . λx. e : A→B
→I

Γ . e : A→B Γ . e′ : A
Γ . e e′ : B

→E

Γ . e : U Γ, x : U . e′ : A

Γ . let x = e in e′ : A
Let

Γ, α type . e : U

Γ . e : ∀α.U
Gen

Γ . e : ∀α.U Γ ` A type

Γ . e : [A/α]U
Spec

Note that unlike in the predicative polymorphic λ-calculus, the rule →I allows us to assign any mono-
type A to variable x as long as expression e is assigned a valid monotype B. Hence, for example,
the same λ-abstraction λx. x can now be assigned different monotypes such as bool→bool, int→ int,
and α→α. The rules Gen and Spec correspond to the rules ∀I and ∀E in the predicative polymorphic
λ-calculus (but not in System F because A in the rule Spec is required to be a monotype).

In the rule Gen (for generalizing a type), expression e in the conclusion plays the role of a type
abstraction. That is, we can think of e in the conclusion as erase(Λα. e). As an example, let us assign a
polytype to the polymorphic identity function λx. x:

Γ . λx. x : ?
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Intuitively λx. x has type α→α for an “any type” α, so we first assign a monotype α→α under the
assumption that α is a valid type variable:

Γ, α type, x : α . x : α
Var

Γ, α type . λx. x : α→α
→I

Note that λx. x has not been assigned a polytype yet. Also note that Γ . λx. x : α→α cannot be a valid
typing derivation because α is a fresh type variable which is not declared in Γ. Assigning a polytype
∀α.α→α to λx. x is accomplished by the rule Gen:

Γ, α type, x : α . x : α
Var

Γ, α type . λx. x : α→α
→I

Γ . λx. x : ∀α.α→α
Gen

As an example of using two type variables, we assign a polytype ∀α.∀β.α→β→(α× β) to λx. λy. (x, y)
as follows (where we assume that product types are available):

Γ, α type, β type, x : α, y : β . x : α
Var

Γ, α type, β type, x : α, y : β . y : β
Var

Γ, α type, β type, x : α, y : β . (x, y) : (α× β)
×I

Γ, α type, β type, x : α . λy. (x, y) : β→(α× β)
→I

Γ, α type, β type . λx. λy. (x, y) : α→β→(α× β)
→I

Γ, α type . λx. λy. (x, y) : ∀β.α→β→(α× β)
Gen

Γ . λx. λy. (x, y) : ∀α.∀β.α→β→(α× β)
Gen

Generalizing the example, we can assign a polytype to an expression e in two steps. First we introduce
as many fresh type variables as necessary to assign a monotype A to e. Then we keep applying the rule
Gen to convert, or generalize, A to a polytype U . If A uses fresh type variables α1, α2, · · · , αn, then U is
given as ∀α1.∀α2. · · · ∀αn.A:

Γ, α1 type, α2 type, · · · , αn type . e : A

Γ, α1 type, α2 type, · · · . e : ∀αn.A
Gen

...
Gen

Γ, α1 type, α2 type . e : · · · ∀αn.A
Gen

Γ, α1 type . e : ∀α2. · · · ∀αn.A
Gen

Γ . e : ∀α1.∀α2. · · · ∀αn.A
Gen

In the rule Spec (for specializing a type), expression e in the conclusion plays the role of a type
application. That is, we can think of e in the conclusion as erase(e JAK). Thus, by applying the rule Spec

repeatedly, we can convert, or specialize, any polytype into a monotype.
A typical use of the rule Spec is to specialize the polytype of a variable introduced in a let-binding

(in which case expression e in the rule Spec is a variable). Specifically a let-binding let x = e in e′

binds variable x to a polymorphic expression e and uses x monomorphically within e′ after special-
izing the type of x to monotypes by the rule Spec. For example, the following typing derivation for
let f = λx. x in (f true, f 0) applies the rule Spec to variable f twice, where we abbreviate Γ, f : ∀α.α→α
as Γ′:

...
Γ . λx. x : ∀α.α→α

Γ′ . f : ∀α.α→α
Var

Γ′ . f : bool→bool
Spec

Γ′ . true : bool
True

Γ′ . f true : bool
→E

Γ′ . f : ∀α.α→α
Var

Γ′ . f : int→ int
Spec

Γ′ . 0 : int
Int

Γ′ . f 0 : int
→E

Γ′ . (f true, f 0) : bool × int
×I

Γ . let f = λx. x in (f true, f 0) : bool× int
Let

Note that in typechecking (f true, f 0), it is mandatory to specialize the type of f to a monotype bool→bool

or int→ int, since an application f e typechecks by the rule →E only if f is assigned a monotype.
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If expression e in the rule Spec is not a variable, the typing derivation of the premise Γ . e : ∀α.U
must end with an application of the rule Gen or another application of the rule Spec. In such a case, we
can eventually locate an application of the rule Gen that is immediately followed by an application of
the rule Spec:

...
Γ, α type . e : U

Γ . e : ∀α.U
Gen

Γ ` A type

Γ . e : [A/α]U
Spec

Here we introduce a type variable α only to instantiate it to a concrete monotype A immediately, which
implies that such a typing derivation is redundant and can be removed. For example, when typecheck-
ing (λx. x) true, there is no need to take a detour by first assigning a polytype ∀α.α→α to λx. x and
then instantiating α to bool. Instead it suffices to assign a monotype bool→bool directly because λx. x
is eventually applied to an argument of type bool:

Γ, α type, x : α . x : α
Var

Γ, α type . λx. x : α→α
→I

Γ . λx. x : ∀α.α→α
Gen

Γ ` bool type

Γ . λx. x : bool→bool
Spec

=⇒

Γ, x : bool . x : bool
Var

Γ . λx. x : bool→bool
→I

This observation suggests that it is unnecessary to specialize the type of an expression that is not a
variable — we only need to apply the rule Spec to polymorphic variables introduced in let-bindings.

The implicit polymorphic type system of SML is connected with let-polymorphism in Section 13.5
via the following theorems:

Theorem 13.10. If Γ ` e : U , then Γ . erase(e) : U .

Theorem 13.11. If Γ . e : U , then there exists a typed expression e′ such that Γ ` e′ : U and erase(e′) = e.

13.7 Value restriction
The type system presented in the previous section is sound only if it does not interact with computa-
tional effects such as mutable references and input/output. To see the problem, consider the following
expression where we assume constructs for integers, booleans, and mutable references:

let x = ref (λy. y) in

let = x := λy. y + 1 in

(!x) true

We can assign a polytype ∀α.ref (α→α) to ref (λy. y) as follows (where we ignore store typing contexts):

Γ, α type, y : α . y : α
Var

Γ, α type . λy. y : α→α
→I

Γ, α type . ref (λy. y) : ref (α→α)
Ref

Γ . ref (λy. y) : ∀α.ref (α→α)
Gen

By the rule Spec, then, we can assign either ref (int→ int) or ref (bool→bool) to variable x. Now both
expressions x := λy. y + 1 and (!x) true are well-typed, but the reduction of (!x) true must not succeed
because it ends up adding a boolean truth true and an integer 1!

In order to avoid the problem arising from the interaction between polymorphism and computa-
tional effects, the type system of SML imposes a requirement, called value restriction, that expression e
in the rule Gen be a syntactic value:

Γ, α type . v : U

Γ . v : ∀α.U
Gen

The idea is to exploit the fact that computational effects cannot interfere with (polymorphic) values,
whose evaluation terminates immediately. Now, for example, ref (λy. y) cannot be assigned a polytype
because ref (λy. y) is not a value and thus its type cannot be generalized by the rule Gen.
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As a consequence of value restriction, variable x in a let-binding let x = e in e′ can be assigned a
polytype only if expression e is a value. If e is not a value, x must be used monomorphically within
expression e′, even if e itself does not specify a unique monotype. This means that we may have to analyze e′
in order to decide the monotype to be assigned to x. As an example, consider the following expression:

let x = (λy. y) (λz. z) in x true

As (λy. y) (λz. z) is not a value, variable x must be assigned a monotype. (λy. y) (λz. z), however, does
not specify a unique monotype for x; it only specifies that the type of x must be of the form A→A for
some monotype A. Fortunately the application x true fixes such a monotype A as bool and x is assigned
a unique monotype bool→bool. The following expression, in contrast, is ill-typed because variable x is
used polymorphically:

let x = (λy. y) (λz. z) in (x true, x 1)

The problem here is that x needs to be assigned two monotypes bool→bool and int→ int simultaneously,
which is clearly out of the question.

13.8 Type reconstruction algorithm

This section presents a type reconstruction algorithm for the type system with implicit polymorphism
in Section 13.6. Given an untyped expression e, the goal is to infer a polytype U such that · . e : U holds.
In addition to being a valid type for e, U also needs to be the most general type for e in the sense that
every valid type for e can be obtained as a special case of U by instantiating some type variables in U .
Given λx. x as input, for example, the algorithm returns the most general polytype ∀α.α→α instead of
a specific monotype such as bool→bool.

Typically the algorithm creates (perhaps a lot of) temporary type variables before finding the most
general type of a given expression. We design the algorithm in such a way that all these temporary type
variables are valid (simply because there is no reason to create invalid ones). As a result, we no longer
need a type declaration α type in the rule Gen (because α is assumed to be a valid type variable) and a
type judgment Γ ` A type in the rule Spec (because A is a valid type if all type variables in it are valid).
Accordingly a typing context now consists only of type bindings:

typing context Γ ::= · | Γ, x : U

With the assumption that all type variables are valid, the rules Gen and Spec are revised as follows:

Γ . e : U α 6∈ ftv (Γ)

Γ . e : ∀α.U
Gen

Γ . e : ∀α.U
Γ . e : [A/α]U

Spec

Here ftv (Γ) denotes the set of free type variables in Γ; ftv(U) denotes the set of free type variables in U :

ftv(·) = ∅

ftv(Γ, x : U) = ftv(Γ) ∪ ftv(U)

ftv(A→B) = ftv (A) ∪ ftv(B)
ftv(α) = {α}

ftv(∀α.U) = ftv (U) − {α}

In the rule Gen, the condition α 6∈ ftv(Γ) checks that α is a fresh type variable. If Γ contains a type
binding x : U where α is already in use as a free type variable in U , α cannot be regarded as a fresh type
variable and generalizing U to ∀α.U is not justified. In the following example, α→α may generalize to
∀α.α→α, assigning the desired polytype to the polymorphic identity function λx. x, because α is not in
use in the empty typing context ·:

x : α . x : α Var

· . λx. x : α→α
→I

· . λx. x : ∀α.α→α
Gen
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If α is already in use as a free type variable, however, such a generalization results in assigning a wrong
type to λx. x:

x : α, y : α . x : α Var

x : α . λy. x : α→α
→I

x : α . λy. x : ∀α.α→α
Gen

Here variable y is unrelated to variable x, yet is assigned the same type in the premise of the rule →I. A
correct typing derivation assigns a fresh type variable to y to reflect the fact that x and y are unrelated:

x : α, y : β . x : α
Var

x : α . λy. x : β→α
→I

x : α . λy. x : ∀β.β→α
Gen

As an example of applying the rule Spec, here is a typing derivation assigning a monotype bool→bool

to λx. x by instantiating a type variable:

· . λx. x : ∀α.α→α
· . λx. x : bool→bool

Spec

For the above example, the rule Spec is unnecessary because we can directly assign bool to variable x:

x : bool . x : bool
Var

· . λx. x : bool→bool
→I

As we have seen in Section 13.6, however, the rule Spec is indispensable for specializing the type of a
variable introduced in a let-binding. In the following example, the same type variable α in ∀α.α→α is
instantiated to two different types β→β and β by the rule Spec:

x : α . x : α Var

· . λx. x : α→α
→I

· . λx. x : ∀α.α→α
Gen

f : ∀α.α→α . f : ∀α.α→α
Var

f : ∀α.α→α . f : (β→β)→(β→β)
Spec

f : ∀α.α→α . f : ∀α.α→α
Var

f : ∀α.α→α . f : β→β
Spec

f : ∀α.α→α . f f : β→β
→E

· . let f = λx. x in f f : β→β
Let

Exercise 13.12. What is wrong with the following typing derivation?

x : ∀α.α→α . x : ∀α.α→α
Var

x : ∀α.α→α . x : (∀α.α→α)→(∀α.α→α)
Spec

x : ∀α.α→α . x : ∀α.α→α
Var

x : ∀α.α→α . x x : ∀α.α→α
→E

· . λx. x x : (∀α.α→α)→(∀α.α→α)
→I

The type reconstruction algorithm, called W , takes a typing context Γ and an expression e as input,
and returns a pair of a type substitution S and a monotype A as output:

W(Γ, e) = (S,A)

A type substitution is a mapping from type variables to monotypes. Note that it is not a mapping to
polytypes because type variables range only over monotypes:

type substitution S ::= id | {A/α} | S ◦ S

id is an identity type substitution which changes no type variable. {A/α} is a singleton type substitution
which maps α to A. S1 ◦ S2 is a composition of S1 and S2 which applies first S2 and then S1. id is the
identity for the composition operator ◦ , i.e., id◦S = S ◦ id = S. As ◦ is associative, we write S1 ◦S2 ◦ S3

for S1 ◦ (S2 ◦ S3) = (S1 ◦ S2) ◦ S3.
An application of a type substitution to a polytype U is formally defined as follows:

September 30, 2011 137



id · U = U
{A/α} · α = A
{A/α} · β = β where α 6= β

{A/α} · B1→B2 = {A/α} ·B1→{A/α} ·B2

{A/α} · ∀α.U = ∀α.U
{A/α} · ∀β.U = ∀β.{A/α} · U where α 6= β and β 6∈ ftv(A)
S1 ◦ S2 · U = S1 · (S2 · U)

Note that if β is a free type variable inA, the case {A/α}·∀β.U needs to rename the bound type variable
β in order to avoid type variable captures. When applied to a typing context, a type substitution is
applied to the type in each type binding:

S · (Γ, x : U) = S · Γ, x : (S · U)

The specification of the algorithm W is concisely stated in its soundness theorem:

Theorem 13.13 (Soundness of W). If W(Γ, e) = (S,A), then S · Γ . e : A.

Given a typing context Γ and an expression e, the algorithm analyzes e to build a type substitution S
mapping free type variables in Γ so that e typechecks with a monotype A. An invariant is that S has no
effect on A, i.e., S ·A = A, since A is obtained after applying S to free type variables in Γ. Here are a few
examples:

• W(x : α, x+ 0) = ({int/α}, int) where we assume a base type int.
When the algorithm starts, x has been assigned a yet unknown monotype α. In the course of
analyzing x + 0, the algorithm discovers that x must be assigned type int, in which case x + 0 is
also assigned type int. Thus the algorithm returns a type substitution {int/α} along with int as the
type of x+ 0.

• W(·, λx. x+ 0) = ({int/α}, int→ int) where we assume a base type int.
When it starts to analyze the λ-abstraction, the algorithm creates a fresh type variable, say α, for
variable x because nothing is known about x yet. In the course of analyzing the body x + 0, the
algorithm discovers that α must be identified with int, in which case the type of the λ-abstraction
becomes int→ int. Hence the algorithm returns a type substitution {int/α} (which is not used
afterwards) with int→ int as the type of λx. x+ 0.

• W(·, λx. x) = (id, α→α)
When it starts to analyze the λ-abstraction, the algorithm creates a fresh type variable, say α, for
variable x because nothing is known about x yet. The body x, however, provides no information
on the type of x, either, and the algorithm ends up returning α→α as a possible type of λx. x.

Exercise 13.14. What is the result of W(y : β, (λx. x) y) if the algorithm W creates a temporary type
variable α for variable x? Is the result unique?

Figure 13.1 shows the pseudocode of the algorithm W . We write ~α for a sequence of distinct type
variables α1, α2, · · · , αn. Then ∀~α.A stands for ∀α1.∀α2. · · · ∀αn.A, and {~β/~α} stands for {βn/αn}◦ · · · ◦
{β2/α2} ◦ {β1/α1}. We write Γ + x : U for Γ − {x : U ′}, x : U if x : U ′ ∈ Γ, and for Γ, x : U if Γ contains
no type binding for variable x.

The first case W(Γ, x) summarizes the result of applying the rule Spec to ∀~α.A as many times as the
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W(Γ, x) = (id, {~β/~α} · A) x : ∀~α.A ∈ Γ and fresh ~β
W(Γ, λx. e) = let (S,A) = W(Γ + x : α, e) in fresh α

(S, (S · α)→A)
W(Γ, e1 e2) = let (S1, A1) = W(Γ, e1) in

let (S2, A2) = W(S1 · Γ, e2) in
let S3 = Unify(S2 · A1 = A2→α) in fresh α
(S3 ◦ S2 ◦ S1, S3 · α)

W(Γ, let x = e1 in e2) = let (S1, A1) = W(Γ, e1) in
let (S2, A2) = W(S1 · Γ + x : GenS1·Γ(A1), e2) in
(S2 ◦ S1, A2)

Figure 13.1: Algorithm W

Unify(·) = id
Unify(E,α = A) = Unify(E,A = α) = if α = A then Unify(E)

else if α ∈ ftv(A) then fail
else Unify({A/α} ·E) ◦ {A/α}

Unify(E,A1→A2 = B1→B2) = Unify(E,A1 = B1, A2 = B2)

Figure 13.2: Algorithm Unify

length of ~α. Note that [A/α]U is written as {A/α} · U in the following typing derivation.

x : ∀α1.∀α2. · · · ∀αn.A ∈ Γ

Γ . x : ∀α1.∀α2. · · · ∀αn.A
Var

Γ . x : {β1/α1} · ∀α2. · · · ∀αn.A
Spec

Γ . x : {β2/α2} ◦ {β1/α1} · · · · ∀αn.A
Spec

...
Spec

Γ . x : · · · ◦ {β2/α2} ◦ {β1/α1} · ∀αn.A
Spec

Γ . x : {βn/αn} ◦ · · · ◦ {β2/α2} ◦ {β1/α1} ·A
Spec

The second case W(Γ, λx. e) creates a fresh type variable α to be assigned to variable x.
The case W(Γ, e1 e2) uses an auxiliary function Unify(E) where E is a set of type equations between

monotypes:
type equations E ::= · | E,A = A

Unify(E) attempts to calculate a type substitution that unifies two types A and A′ in each type equation
A = A′ in E. If no such type substitution exists, Unify(E) fails. Figure 13.2 shows the definition of
Unify(E). We write S ·E for the result of applying type substitution S to every type in E:

S · (E,A = A′) = S · E, S · A = S ·A′

The specification of the function Unify is stated as follows:

Proposition 13.15. If Unify(A1 = A′
1, · · · , An = A′

n) = S, then S · Ai = S ·A′
i for i = 1, · · · , n.

Here are a few examples of Unify(E) where we assume a base type int:

(1) Unify(α = int→α) = fail
(2) Unify(α = α→α) = fail
(3) Unify(α→α = int→ int) = {int/α}
(4) Unify(α→β = α→ int) = {int/β}
(5) Unify(α→β = β→α) = {β/α} or {α/β}
(6) Unify(α→β = β→α, α = int) = {int/β} ◦ {int/α}
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In cases (1) and (2), the unification fails because both int→α and α→α contain α as a free type variable,
but are strictly larger than α. In case (5), either {β/α} or {α/β} successfully unifies α→β and β→α.
Case (6) uses an additional assumption Unify(E, int = int) = Unify(E):

Unify(α→β = β→α, α = int) = Unify({int/α} · (α→β = β→α)) ◦ {int/α}
= Unify(int→β = β→ int) ◦ {int/α}
= Unify(int = β, β = int) ◦ {int/α}
= Unify({int/β} · int = β) ◦ {int/β} ◦ {int/α}
= Unify(int = int) ◦ {int/β} ◦ {int/α}
= Unify(·) ◦ {int/β} ◦ {int/α}
= id ◦ {int/β} ◦ {int/α}
= {int/β} ◦ {int/α}

The case W(Γ, let x = e1 in e2) uses another auxiliary function GenΓ(A) which generalizes monotype
A to a polytype after taking into account free type variables in typing context Γ:

GenΓ(A) = ∀α1.∀α2. · · · ∀αn.A where αi 6∈ ftv(Γ) and αi ∈ ftv(A) for i = 1, · · · , n.

That is, if α ∈ ftv(A) is in ftv(Γ), α ∈ A is not interpreted as “any type” with respect to Γ. Note that
GenΓ(A) = ∀α1.∀α2. · · · ∀αn.A is equivalent to applying the rule Gen exactly n times as follows:

Γ . e : A αn 6∈ ftv(Γ)

Γ . e : ∀αn.A
Gen

αn−1 6∈ ftv(Γ)

Γ . e : ∀αn−1.A
Gen

...
Γ . e : ∀α1.∀α2. · · · ∀αn.A

Gen

Here are a few examples of GenΓ(A):

Gen·(α→α) = ∀α.α→α
Genx:α(α→α) = α→α
Genx:α(α→β) = ∀β.α→β

Genx:α,y:β(α→β) = α→β

Given an expression e, the algorithm W returns a monotype A which may contain free type vari-
ables. If we wish to obtain the most general polytype for e, it suffices to generalizeA with respect to the
given typing context. Specifically, if W(Γ, e) = (S,A) holds, Theorem 13.13 justifies S · Γ . e : A, which
in turn justifies S · Γ . e : GenS·Γ(A). Hence we may take GenS·Γ(A) as the most general type for e under
typing context Γ, although we do not formally prove this property (called the completeness of W) here.
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